京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在安防行业应用前景依然值得期待
近几年随着平安城市、智能交通、智能建筑等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。
如何利用大数据发挥视频监控图像的最大效能与数据本身的应用价值,至关重要也值得探索。
根据IDC预测,全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据的时代。
作为信息时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能建筑等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。
当下,安防行业大数据的存在已经被越来越多的人熟知,特别是安防行业海量的非结构化视频数据,以及飞速增长的特征数据(卡口过车数据、人像抓拍数据、异常行为数据等),带动了大数据的存储、管理、分析等一系列问题,吸引着更多人的关注。
总体来说,大数据安防市场包括两方面。
一是个人消费领域,如家庭和社交媒体产生的数据;另外是城市基础设施建设,平安城市和智能交通大数据安防的规模化应用说明了这个城市基础设施建设是大数据安防应用主流,而个人消费领域还在孕育阶段,期待厚积薄发。
尽管市场发展潜力巨大,但大数据自身也面临着挑战。一方面,数据的运用仍面临多种技术难关的束缚,大数据方面的人才比较缺乏,大数据的产品尚不成熟等问题都制约着大数据在报警运营服务领域的发展。
另一方面,对于安防数据中最重要的视频数据,对其进行智能视频分析和挖掘是很困难的事情。目前,除了车牌识别、人数统计等算法较为成熟外,对视频进行事件分析、人脸识别、摘要等技术都还没达到大规模的商用水平,这也极大地制约了安防大数据的实施。
比如说对于安防视频图像数据,传统的处理方式主要靠事后人工查阅来完成,效率极低。但面对海量的安防数据,如果继续采用传统方式,不仅效率低下,而且不能达到实战应用目的,偏离了安防系统建设目的。业内人士表示,安防大数据在存储、挖掘、分析等方面仍待突破。
因此,在建设智能安防的路上,如何利用大数据发挥视频监控图像的最大效能与数据本身的应用价值,至关重要也值得探索。要知道,大数据最核心的价值在于对数据进行存储和分析,分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识。
纵观全局,现阶段大数据、云存储、云计算和大数据相关技术已经对安防行业,特别是视频监控行业,形成了深刻的影响,实现了重大的推进作用。而行业特征决定了技术在行业内的发展演进,借鉴互联网行业先进技术、经验,结合行业特征和业务目标,进行深度优化演进的系统,将拥有非常好的竞争优势。
因此,大数据在安防行业应用前景依然值得期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27