
剖析大数据市场:继续发展并逐渐迁移云端
大数据市场呈一片欣欣向荣的景象,近年来,随着技术的不断发展创新,大数据顺着时代发展的潮流,发展迅猛。“大数据”一词最早出现在1990年的一本科技词典中,当时这个词是用于形容庞大且增长猛烈的企业数据,利用当时的技术,人们很难存储并分析这些数据。
2001年,分析师DougLaney提出了大数据的定义,它包含三个“V”的维度:数量(volume)、速度(velocity)和种类(variety)。在随后的几年里,Laney的定义成为了行业通用的标准,有些人还加入了第四个V来定义它——可变性(variability)。
2014年,IDC和EMC发布了最新版本的《数字世界研究报告》,其中指出全球数字化系统中存储的数据量正在以每年40%的速度增长着。报告还预测,到2020年,整个数字化世界中将存储44泽字节的信息。这些数据就如同宇宙中的繁星一样多,要把这些信息装进2014年代的数据表里,表格的长度是日月距离的6.6倍。
现如今,大数据依然在快速地发展,不过人们已经渐渐不去把数据存储量的增长当成焦点。相反地,越来越多的组织开始把目光放在数据分析、数据科学以及机器学习上。他们直接把管理大数据当做是业务的一部分,如果想要在竞争中获得胜利,他们就需要找到将存储的大数据转化为高价值洞察的方式。
大数据市场概况
根据IDC报告,全球大数据及商业分析的收入可能将从2017年的1508亿美元增长到2020年的2100亿美元,复合年增长率高达11.9%。这也意味着,在大数据发展的这些年,企业在大数据技术上的花费越来越多。
IDC集团副总裁DanVesset说:“在经历了S型曲线式的多年发展以后,大数据和商业分析解决方案已经完全成为了主流。”
大部分组织和企业认为大数据项目对他们的营收有积极的影响。在《NewVantage Partners 大数据管理调查》中,80.7%的受访者反馈针对大数据的投资是成功的,48.4%的人认为他们通过大数据项目实现了可以被计量的好处。
这样的结果可能会鼓励企业继续向大数据投资,但他们所采纳的大数据解决方案的类型正在发生转变。根据Forrester的一项调查,“大数据正在向云端迁移。事实上,全球范围内,通过云端订阅购买大数据解决方案的增长速度是本地化订阅的7.5倍。”Forrester还补充道,“此外,根据我们2016-2017年针对数据分析专家的调查,公有云是大数据领域首选的技术。”
对于依赖机器学习技术的大数据分析而言,云端解决方案特别受欢迎。机器学习需要高级且昂贵的计算机硬件,但在云端进行机器学习的方式能够令企业以极少的成本实现这一过程,这样的成本只是自行安装数据中心的一小部分。虽然企业面临着和云端分析相关的种种困难,但专家认为云端分析发展的趋势未来几年将会加快。
大数据技术
随着大数据市场的逐渐成熟,供应商们也开发出了各式各样不同的大数据技术来满足企业的需求。这是一个非常广阔的市场,但大部分大数据解决方案都可以根据以下标准进行分类:
商业智能(BI):商业智能解决方案能够基于存储在数据仓库中的业务数据提供分析及报告能力。根据Gartner报告,BI和分析的市场预计将从2017年的183亿美元增长到2020年的228亿美元。但是,它们的增长速率比以前更慢。
数据湖:数据湖能够消化各种来源渠道的数据,并以数据源原始的格式进行存储。它与数据仓库之间的差别在于,数据仓库中的数据都是经过清洗并且调整到可分析格式的数据。对于那些希望同时进行结构化和非结构化分析的组织而言,数据湖非常受欢迎。
数据整合:大数据分析技术面临的一个巨大挑战就是要从各个分散的数据源收集各种相关的数据,并把他们统一到一个能够轻松实现分析的格式。这为我们带来了很多的数据整合解决方案,有时大家把它叫做ETL(数据提取、转换、加载)解决方案。根据Markets and Markets的研究报告,数据整合业务的收入到2022年可能会增长到124亿美元。
数据管理:这类型的解决方案中包含了能够帮助企业整合、清洗、存储、维护并保证数字数据质量的各种工具。Markets and Markets预计这类型大数据工具到2022年将产生1052亿美元的收入。
数据挖掘:数据挖掘的范围很广,其中包括了各式各样的找到大数据模式与规律的技术。虽然很多大数据解决方案依然在异同数据挖掘的能力,但这个概念已经不太受到供应商的欢迎了,因为他们开始用“预测性分析”和“机器学习”来形容自己的解决方案。
开源技术:很多市面上最常用的大数据技术都是通过开源的授权来实现的。特别像Hadoop和Spark这样以Apache为基础进行管理的技术,已经非常受欢迎。很多供应商都能够提供这些开源大数据技术的商业化支持版本。
NoSQL数据库:不同于关系型数据库管理系统(RDBMSes),NoSQL数据库不通过传统的行列表格形式存储信息,而是通过各种模型,例如行列、文件、数据追踪图等改格式进行存储。很多企业都在使用NoSQL数据库用于非结构化数据的存储和分析
预测性分析:这是目前最受欢迎的大数据分析形势。预测性分析关注过往的历史趋势,目的是对未来会发生什么做出预测。很多现代的预测性分析解决方案都加入了机器学习的能力,目的是随着时间的增加提高预测的准确性。Zion的一项市场调研报告指出,预测性分析的指出将从2016年的34.9亿美元增长到2022年的109.5亿美元。
诊断分析:诊断分析在预测性分析上更进了一步。除了告诉企业未来可能会发生什么,这样的解决方案还能够基于事件发生的原因提出建议,达成期望的结果。专家认为,目前市面上只有少数的大数据分析解决方案拥有真正的预测性分析能力,但很多供应商都在大力研究这个领域。
内存数据库:内存技术大大提升了大数据分析的速度。在任何的计算机系统中,内存数据的存取(有时也叫RAM)相比存储在硬件或实体硬盘中的数据存取都是快的多的。内存数据库能够帮助用户在内存中存储大量的数据,大幅提升速度。
数据科学平台:很多供应商都开始将他们的大数据分析解决方案标榜为“数据科学平台”。这个领域的产品通常而言都把很多不同的功能整合到了同一个平台上。这个领域里几乎所有的产品都有一些分析或者机器学习的功能,很多也有数据整合和数据管理的能力。
人工智能和机器学习:很多新一代的大数据分析工具都加入了机器学习能力,这是人工智能(AI)领域的一个子集。机器学习利用算法帮助系统随着时间的增长优化任务处理的能力,并且不需要直接的编程行动。这是大数据领域中发展最快的部分。
在2018年的大数据市场中,大数据还将继续发展,而重心也逐渐迁移向云端。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11