京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据基础架构发展需考虑的重要因素
随着IT行业持续地灌输廉价存储的优势,企业较以往拥有者更多的数据,那么在评估大数据基础架构的过程中需要深入地调查哪些因素。本篇涉及到了在容量、延迟、访问性、安全性和成本这些重要因素的评估。
大数据发展的驱动因素
除了存储比以往更多的数据,我们所面临的数据种类也变得更加繁杂。这些数据源包括互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等。除了静态的数据增长方面,事务交易也会保持一个固定的数据“增长速度”。例如飞速增长的社交信息所产生的大量交易事务和记录。不过现有的不断扩大数据集无法确保能够为业务搜索出有价值的信息。
当今的信息是一项重要的生产因素
数据业已成为了一种生产资料,就如何资本、劳动力和原始材料那样,而且也不限于某一行业内的特定应用。企业中所有部门都旨在整合比较越来越多的数据集合,致力于降低成本、提升品质、增强生产能力以及开发新产品。举例来说,对于现场产品的直接数据分析有助于提升设计。又例如企业可以通过对用户习惯的深入分析,比较整体市场的增长特性,大幅提升自己在竞争分析方面的能力。
存储发展的必要性
大数据意味着数据的增长超过了其本身的基础架构,这驱动着应对这些特殊挑战的存储、网络和计算系统进一步的发展。软件应用需求最终推动了硬件功能的发展,同时在这种情况下,大数据分析的处理过程正在影响着数据存储基础架构的发展。这对于存储和IT基础架构企业而言是一项机遇。随着结构化和非结构化数据集的持续增长,这类数据的分析方式也更为多样化,当前的存储系统设计难以应对大数据基础架构所需。存储供应商已经开始推出基于数据块和基于文件的系统来应对许多这方面的需求。以下列出了一些大数据存储基础架构的特性,这些都是源自大数据的挑战。
容量。“大”在很多时候可以理解为PB级别的数据,因此大数据基础架构当然要能够可以扩展。不过其同样必须能够简易地完成扩展,以模块化或阵列的方式为用户直接增加容量,或者至少保持系统不会宕机。横向扩展式存储由于能够满足这种需求,变得十分流行。横向扩展集群体系架构的特征是由存储节点构成,每个节点具备处理能力和可连接性,可以无缝地扩展,避免传统系统可能产生的烟囱式存储的问题。
大数据还意味着大量的文件。管理元数据文件系统的累计会降低可扩展性并影响性能,用传统的NAS系统就会在这种情况下出现问题。基于对象的存储体系架构则通过另一种方式,支持在大数据存储系统中扩展至十亿级别的文件数量,而不会产生传统文件系统中会遇到的负载问题。基于对象的存储可以在不同的地理位置进行扩展,可以在多个不同地点扩展出大型的基础架构。
延迟。大数据基础架构中或许同样会包含实时性的组件,尤其是在网页交互或金融处理事务中。存储系统必须能够应对上述问题同时保持相应的性能,因为延迟可能产生过期数据。在这一领域,横向扩展式基础架构同样能够通过应用存储节点集群,随着容量扩展的同时增强处理能力和可连接性。基于对象的存储系统可能并发数据流,更大程度上改善吞吐量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12