
六个提示 预防企业数据发生灾难
数据,企业今天处理的大量数据使他们面临着许多困难挑战,这些挑战之中不仅有各种类型的数据灾害本身,而且与制定强有力的处理和恢复这些灾害的计划有关。这些计划需要能够从越来越大的应用程序中恢复越来越多的数据,并且这样做符合符合其业务需求的服务级别协议。
IT和业务方面经常会有数据需要恢复,哪些数据需要立即恢复,以及以后可以收回哪些数据。结合许多企业仍然依赖基础数据保护系统和解决方案,难以备份业务所需的所有数据,或者在业务需要的时间和方式下恢复。
这里提供了以下提示,帮助企业开发数据保护计划,使企业能够在数据灾难时快速,经济地恢复所需的数据。
一 ,失败计划=计划失败
在数据灾难发生后,即刻的反应是如何在计划中得做出明确的反应。未能规划数据灾害的企业将会出现更多的数据危机。通过定义明确的数据恢复服务级别来满足企业的业务需求,您可以简化恢复过程,同时避免“过度建设”,并花费太多的不必要的数据保护和恢复解决方案。
二,规划不同类型的数据灾难
虽然企业知道数据灾难可能造成的损害,但他们往往不会考虑可能影响其业务的所有不同类型的数据灾难。人为错误和自然灾害可能会破坏企业的数据,就像硬件故障,软件问题一样。为了使企业能够全面准备从各种数据灾难中恢复过来,企业必须为所有现实的潜在数据灾难制定计划。
这个过程的第一步是确定各种数据灾难对企业的影响程度。一旦确定,企业需要评估每次灾难所需的恢复时间类型。通过了解需要的恢复时间,您可以确保计划的设计可以满足突发事件,并且如果数据灾难发生,可以使企业的每个人都平静,按时完成工作。
三,准备在所有基础设施(包括云端)处理灾难
越来越多的公司正在云环境中进行计算工作运行业务,如AWS或Azure。随着这一增长,公司需要准备处理数据灾难,这些灾难不仅影响其内部部署基础架构,而且影响其云基础设施。如果出现紧急情况,员工和企业在其所需的任何基础设施上可以恢复他们需要的数据。此外,与云的典型优势并存,一些公司发现云也被证明是一种敏捷快速的,有弹性和负担得起的灾难恢复选项。
四,定义服务级别协议
无论是IT部门还是其他部门,在企业里可能会认为IT他们了解灾难恢复计划,服务水平是一流的实际上灾难恢复计划是需要多个部门协同合作的。如果发生灾难,企业任何部门双方都应该积极主动响应。通常,IT有资源和能力提供技术服务,但业务方面的期望和需求并不一致。
这意味着需要各个部门之间协同合作,制定一个能够顺利恢复的计划,这关系到灾难恢复成功与否,是至关重要的,双方保持一致,员工和企业在实际发生灾难时的压力降低到最小。
五,测试您的数据环境
在制定了明确的服务级别协议和应用重要性的清单之后,企业在数据灾难发生之前需要对其数据恢复计划进行测试。不仅测试有助于确保计划的有效性,而且还可以揭示自动化数据恢复的新方式,有助于减少恢复时间和数据保护成本。
六,更新您的数据灾难计划
这往往被忽视,这是避免数据灾难的重要步骤。有的恢复计划使用五年,十年甚至更久(和数据备份和恢复假设)并不少见。随着技术和数字业务需求的不断变化,组织必须每季度(甚至在短时间内)对其数据灾难计划进行测试和更新。
随着数据,应用,技术和业务需求的不断变化,例如三个月前工作的灾难计划现在可能已经过时了。该计划已经不能保护所需的数据,经常更新灾难计划,可以更好地保护数据,降低数据灾难风险或加快数据恢复时间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10