京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库必须保障可访问性和可用性
大多数人都理解企业数据破坏造成的负面效果。在解决数据仓库的安全性方面,有两个特别重要的问题。第一是,数据仓库必须能够控制数据访问权限(数据权利)。第二是,提供业务持续性和灾难恢复(数据可用性)。
在数据访问权限方面,系统需要给一些用户分配权限,同时拒绝其他用户访问。在大型数据仓库中,有大量的数据需要保护,并且通常还有大量不同的用户组。系统需要支持端到端作业方式--从分段表到运营数据存储、分析和报表结构。
此外,敏感数据也存在问题,如个人身份信息(PII)、HR数据和企业敏感信息。相对于其他类型的信息而言,这些数据需要更严格的保护和更仔细的审核,并且会混合到数据仓库的数据结构中。它可能需要进行加密,才能实现足够的保护要求。
将所有这些重要数据保存在一个位置是非常危险的,因为攻击者可以轻松收集到所有数据。然而,安全性是不固定的活动目标。人们可以来,也可以走。他们会改变工作职责。保持安全性一直是一个挑战。要在多个系统上实现安全性难度就更大。
注:如果一个来源的信息都很难保证安全,那么想要保证多个来源的信息安全性,难度就更大了。例如,用户可能能够查看人力报告系统的信息,但是无法查看HR系统记录的员工计时工资。尽管如此,这些信息都存储在数据仓库中,所以可以对人力成本进行分析。
如果一个数据仓库系统能够管理整个数据链,那么它就能够提供最容易管理的数据安全性。单个安全系统更容易维护和更新。保存唯一真实数据的大型数据仓库可以实现最安全的配置。PII可以进行加密或散列化,从而保护各个信息的保密性。此外,数据也可以进行汇总,使任意个体的信息都保持隐藏,且可以在分析过程中使用。
数据可用性变得越来越重要,因为一旦数据仓库成为企业报表数据的主要来源,那么它就成为企业中不可或缺的组件。这会对几个方面造成影响。首先,它会影响数据备份和恢复。大型数据仓库系统在为用户保证性能时,还必须同时运行备份过程。虽然单个大型系统的备份难度要大于一组小型系统的备份,但是它在备份操作管理和数据保护方面更简单一些。
注:如果可用时间较短,那么执行大型数据集合的备份和恢复是很困难的。在设计一个大型数据仓库系统时,这些操作所需要的时间必须仔细斟酌。
其次是可用性。单独的内聚系统可能会成为单一故障点。然而,在大多数情况中,系统可以设计消除这个故障点。这是一个必须认真考虑的问题。首先,数据仓库系统本身要具备应付内部故障的能力。其次,如果远程位置灾难恢复机制适合这种数据仓库,那么系统必须支持远程站点操作。远程站点数据的同步是一个严重的问题,它会随数据仓库的数据量增加而加剧。为了支持大型数据仓库,必须认真对待这些问题。
再次强调,单一系统的优点在于简化管理。如果一个系统设计良好,拥有清晰的可用性维护过程和流程,那么其24 × 7可用性保持难度会远远小于多个系统。从IT角度看,维护一个系统的难度通常会小于多个小型系统的维护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12