
数据智能化:释放未来数据价值的关键
在当前的技术领域,没有什么能像人工智能(AI)那样引起人们的好奇和兴奋。而AI的潜在优势,也刚刚开始在企业内显现出来。
然而,企业中人工智能的增长受到了阻碍,因为数据科学家通常无法获得建立有效人工智能模型所需的相关数据。这些数据专家经常被迫仅依赖于一些已知的来源,如现有的数据仓库,而并不能利用他们所需的所有实时的真实数据。此外,许多公司很难有效且经济地确定大量数据的业务环境和质量。鉴于这些困难,很容易理解AI在加速和应用过程中的一些历史障碍。
数据对AI有价值,用户才能自信而安全地使用它来训练AI模型。实现这一目标的唯一方法是以“智能数据”为基础。
多年来,我们已经超越了数据的收集和聚合,以驱动特定的业务应用程序(数据1.0),组织已经能够创建定义明确的流程,允许任何人访问数据,但这还远远不够,我们现已达到了需要智能数据才能真正为企业范围的转型提供动力的数据(数据3.0)。
例如,考虑一家公司将尝试重新定义其与客户群的传统关系所面临的挑战,引导这种颠覆性变革需要来自众多数据源,诸如数据库,数据仓库,应用程序,大数据系统,物联网,社交媒体等的输入,各种数据类型,诸如结构化,半结构化和非结构化,以及各种位置,诸如本地,云,混合和大数据等因素。
如今,数据湖正在成为信息变革时代所需大量不同数据的首选存储库。但没有智能数据,这些湖泊价值不大。 Gartner此前曾预计,到2018年,90%的数据湖将毫无用处,因为它们充满了原始数据,很少有人会使用这些技术。
相比之下,通过智能数据,数据科学家可以进行类似Google的搜索,并立即发现相关数据的所有潜在来源。智能数据可以节省大量宝贵的时间,数据科学家可能不得不花费时间来收集、组装和改进模型所需的数据
那么如何确保数据真正智能化?通过构建端到端数据管理平台,该数据管理平台本身使用机器学习和AI功能,由广泛的元数据驱动,以提高平台的整体生产力。元数据是释放数据价值的关键。
如果用户希望提供全面,相关且准确的数据来实施人工智能技术,那么就需要查看四种不同的元数据类别:
应用于此元数据集合的AI和机器学习不仅有助于识别和推荐正确的数据,该数据也可以自动处理——无需人工干预,使其适用于企业AI项目。
数字化转型,正在迫使组织以不同的方式审视数据,这是成为“猎物或捕食者”的问题。如今,有实时可用的数据和工具访问,可以实现快速分析,将促进了人工智能和机器学习,并允许过渡到数据优先的方法。由于数字化、数据爆炸以及人工智能对企业的变革影响,人工智能带来的信息技术变革正在蓬勃发展。
显然,越来越多的数据输入可能影响人工智能应用程序的决策,因此组织需要对相关且有影响力的内容进行分类整理。然而,在您的组织采用人工驱动的数据管理方法之前,请考虑以下问题:
您希望从AI中获得什么?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10