
警惕“数据迷信”倾向 莫把大数据当“万能钥匙”
近几年,云计算、大数据成了热词,市场上形形色色的“数据产品”不断涌现。在商业领域,不少互联网行业巨头正围绕数据展开竞争,掀起一场“数据革命”。不少企业家们甚至认为,谁掌握了大数据,谁就能够引领未来行业发展的潮流。
不可否认,海量数据中包含着用户的消费需求、习惯、偏好等诸多信息,如果数据采集和分析方法得当,一定程度上能够揭示出隐藏在行为背后的内在规律。特别是随着互联网经济的崛起,数据深度融入人们的日常生活,企业通过洞察和分析大数据,能够对市场精准定位,推出更多解决消费者“痛点”的创新产品。
然而,在采集数据、使用数据的过程中,一些企业也出现了“数据迷信”的倾向,把大数据视为企业决策的“万能钥匙”,从产品设计、市场布局到用户体验,认为只要拥有了大数据,就能包打天下,没有解决不了的问题。
这种“数据迷信”的背后,是简单地将数据等同于科学的思想在作祟。有一种声音认为,只有通过数据描述和反映出来的事实,才是关于市场、社会最真实的事实。这不仅表现在学术研究领域,认为定量研究比定性研究更接近科学,也反映在现实经济活动中,人们过于看重市盈率、回报率、满意度等指标,往往会忽略或者回避那些看不见的、不能量化的因素。
多年前,为争夺潜在市场,Facebook和微软旗下的Live Space进行了网站界面改版。用户调查显示,改版之后,Facebook的用户满意度并不高,招致了不少反对的声音;而Live Space既没有太多用户夸它,也没有用户骂它。如果从数据来看,显然Live Space改版更为成功,因为没有用户表达不满。但事实并非如此,对于前者,虽然有很多用户表达不满,但说明用户在乎它;而对于后者,大多数用户已经漠不关心了。如今,Facebook已成为全球最成功的互联网公司之一,而Live Space早已退出市场。
这个例子说明,通过统计数据来认知现实世界,从来都不能尽善尽美。数据虽然提供了一种更直观看世界的方式,但如果从数据中得出结论、做出决策的方法论基础不科学、不坚实,那么由此得出的结论就是不可靠的。因而,盲目迷信大数据,结果很可能被大数据所“忽悠”。
这是因为,由于存在样本误差和统计偏差等种种“陷阱”,人们难免会将一些不科学、不真实的数据纳入分析框架。同时,数据虽然是客观的,但是对于数据的解释权,却掌握在设计者、分析者和使用者手中,因此难以完全避免人们由于立场、利益不同,造成数据解读的偏差和成见。
更为重要的是,现实社会经济生活的复杂程度,很难完全采用数据和公式来反映。对此,经济学家早已提出,市场是无数人互动构成的“复杂现象”,人们几乎永远不可能充分了解或计算出能够影响决定市场结果的所有情况,也不可能进行全面的测量和量化。
因此,无论在企业经营,还是社会治理领域,决策者都应具备一些“数据素养”——既要善用大数据带来的洞察力,又不能一味迷信大数据,特别要警惕把大数据作为解决问题的“万能钥匙”的倾向。只有在尊重数据伦理、保证数据准确、承认数据局限的基础上,才能做出恰当的公共政策或商业上的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28