
KNN算法思想与应用例子
这篇文章是在学习KNN时写的笔记,所参考的书为《机器学习实战》,希望深入浅出地解释K近邻算法的思想,最后放一个用k近邻算法识别图像数字的例子。
KNN算法也称K近邻,是一种监督学习算法,即它需要训练集参与模型的构建。它适用于带标签集的行列式(可理解为二维数组)的数据集。
需要准备的数据有:训练数据集,训练标签集(每个数据与每个标签都一一对应)用于参与模型构建;
需要测试的数据集——通过这个模型得出——标签集(每个数据对应的标签)
举个例子:我们把人体的指标量化,比如体重多少,三围多少,脂肪比例多少,然后这个标签就是性别(男或女)。我们的训练数据集就是500个男性和500个女性的身体指标,每个数据对应性别标签(男或女),这个就是训练标签集。然后我们输入一个人的指标,模型给出一个性别的判断,这个就是输出的标签集,也就是最后的预测结果。
算法的流程为:
1、计算输入测试数据与训练数据集的距离,这里用欧式距离来计算。
2、根据得到的距离大小,按升序排序
3、取前K个距离最小的数据集对应的标签
4、计算这些标签的出现频率
5、取出现频率最高的标签作为输入的测试数据的最后的标签,即预测结果
其中,欧式距离的计算公式如下:
这个公式怎么理解呢?假设输入的被测数据为A,它有两个维度(或者说字段),分别是AX1和AX2。B为训练数据集,同理也有两个维度,BX1和BX2和,所以以上的计算公式即不同维度的差的平方的和的开方。
下面直接贴上代码,每一段都附有注释,希望童鞋们可以通过理解代码的执行来掌握整个KNN算法的流程。
# KNN算法主程序
def knnmain(inX,dataset,labels,k): #输入量有(被测数据,训练数据集,训练标签集,K值),输入量皆为数组形式
datasetsite=dataset.shape[0] #取训练数据集的总数量n
inXdata=tile(inX,(datasetsite,1)) #将被测数据的数组复制为n行相同数组组成的二维数组,方便下面的欧式距离计算
sqdistance=inXdata-dataset #开始计算欧式距离,这里计算被测数据和训练数据集之间相同维度的差
distance=sqdistance**2 #计算差的平方
dist=distance.sum(axis=1) #计算不同维度的差的平方的总和
lastdistance=dist**0.5 #将总和开方
sortnum=lastdistance.argsort() #返回从小到大(增序)的索引值
countdata={} #创建一个空字典用于储存标签和对应的数量值
for i in range(k):
vlabels=labels[sortnum[i]] #将前k个距离最近的数据的标签传给vlabels
countdata[vlabels]=countdata.get(vlabels,0)+1 #vlabels作为字典的键,而其出现的次数作为字典的值
sortnumzi=sorted(countdata.iteritems(),key=operator.itemgetter(1),reverse=True) #将字典按值降序排序,即第一位是出现次数最多的标签
return sortnumzi[0][0] #返回出现次数最多的标签值
整个KNN算法的核心思想是比较简洁的,下面贴一个手写数字识别的应用。
一个文本文档里储存一个32*32的由1和0组成的图像,差不多是下图所示:
我们大概能识别出第一个图片里是0,第二个图片里是1,实际上每个文本文档都有一个文档名,如第一个图片的文档名就是"0_0.txt",那么我们就可以从文档名里取得该图片的标签。我们有一个训练文件夹,里面的文档文件可以获取并构成训练数据集和训练标签集。
我们也有一个测试文件夹,同理里面的文档文件也可以获取并构成测试数据集和测试标签集(拿来与预测结果做对比)。文件夹截图如下:
下面直接贴上代码帮助理解
先是一个将32*32的文本文档转化为1*1024的程序,因为我们写的KNN算法主程序是以一行为单位的。
def to_32(filename):
returnoss=zeros((1,1024))
ma=open(filename)
i=int(0)
for line in ma.readlines():
for j in range(32):
returnoss[0,i*32+j]=line[j]
i += 1
return returnoss
下面是手写数字识别程序:
def distinguish():
filestrain=listdir('trainingDigits') #打开训练集文件夹
filestest=listdir('testDigits') #打开测试集文件夹
mtrain=len(filestrain) #训练集文件数量
mtest=len(filestest) #测试集文件数量
allfilestrain=zeros((mtrain,1024)) #m行1024列的矩阵
allfilestest=zeros((mtest,1024))
labelstrain=[] #创造一个空列表用于储存试验向量的标签
labelstest=[]
for i in range(mtrain):
nametrain=filestrain[i] #选取文件名
inX=open('trainingDigits/%s' % nametrain)
allfilestrain[i,:]=to_32(inX) ##把每个文件中的32*32矩阵转换成1*1024的矩阵
label1=nametrain.split('.')[0]
label1=int(label1.split('_')[0]) #获取每个数据的标签
labelstrain.append(label1) #将所有标签合成一个列表
for j in range(mtest):
nametest=filestest[j]
inY=open('trainingDigits/%s' % nametest)
allfilestest[j,:]=to_32(inY)
label2=nametest.split('.')[0]
label2=int(label2.split('_')[0])
labelstest.append(label2)
labelstrain=np.array(labelstrain)
labelstest=np.array(labelstest)
grouptrain=allfilestrain
grouptest=allfilestest
error=0.0 #初始化判断错误率
results=[]
for line in grouptest:
result=knnmain(line,grouptrain,labelstrain,3)
results.append(result)
errornum=0 ##初始化判断错误数量
print 'the wrong prodiction as:'
for i in range(mtest):
if results[i] != labelstest[i]:
print 'result=',results[i],'labelstest=',labelstest[i] #输出所有判断错误的例子
errornum +=1
print 'the errornum is:',errornum #输出判断错误量
print 'the allnum is:',mtest #输出总测试量
error=float(errornum/float(mtest))
print 'the error persent is:',error #输出总测试错误率
该程序运行截图如下:
我们看到错误率是比较低,说明该算法的精度是很高的。
结语:从上面例子的应用来看,KNN算法的精度是很高,但是对噪声有些敏感,我们观察上面的运行结果,凡是判断失误的一般是两个数字长得比较像,比如9和5,下面的勾很像,9和7,也是比较像的,也就是说,假如测试的数据有些偏于常态,可能一个7长得比较歪,那就判断为9了,这些都是噪声,它对这些噪声的数据是无法精准识别的,因为k值较小,下面会说到k值得取值问题。另有,它的计算相对复杂,若对象数据集巨大,则计算量也很大。当然,最重要的一点,对k值的把握很重要,这一般是根据具体情况来判断,较大的k值能减少噪声干扰,但会使分类界限模糊,较小的k值又容易被噪声影响。一般取一个较小的k值,再通过交叉验证来选取最优k值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27