
数据结构与算法之排序
堆排序、快速排序、希尔排序、直接选择排序不是稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、链表插入排序、归并排序是稳定的排序算法。
直接插入排序 T(n) = O(n^2)
直接插入排序「Insertion Sort」的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。
设数组为a[0…n-1]:
1. 初始时,a[0]自成1个有序区,无序区为a[1..n-1]。令i=1。
2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3. i++并重复第二步直到i==n-1。排序完成。
折半插入排序 T(n) = O(n^2)
折半插入排序是对直接插入排序的简单改进,对于折半插入排序而言,当需要插入第i个元素时,它不会逐个进行比较每个元素,而是:
1. 计算0~i-1索引的中间点,也就是用i索引处的元素和(0+i-1)/2索引处的元素进行比较,如果i索引处的元素值大,就直接在(0+i-1)/2~i-1半个范围内进行搜索;反之在0~(0+i-1)/2半个范围内搜索,这就是所谓的折半
2. 在半个范围内搜索时,按照1的方法不断地进行折半搜索,这样就可以将搜索范围缩小到1/2、1/4、1/8…,从而快速的确定插入位置
链表插入排序 T(n) = O(n^2)
链表插入排序的基本思想是:假设前 n-1个节点有序,取最后节点,沿链表依次查找比较,直到合适位置,修改「本节点」和「待插入节点」的指针。
1. 沿头节点遍历链表,比较此节点、待插入节点、后继节点的大小关系,直到:此节点 < 待插入节点 < 后继节点。
2. 令「此节点」指向「待插入节点」,「待插入节点」指向「后继节点」。
Shell 排序(希尔排序) T(n) = O(n^1.5)
希尔排序的实质就是分组插入排序,该方法又称缩小增量排序。该方法的基本思想是:
1. 先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序
2. 然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小,1)时,再对全体元素进行一次直接插入排序
冒泡排序 T(n) = O(n^2)
冒泡排序的基本思想是,对相邻的元素进行两两比较,顺序相反则进行交换,这样,每一趟会将最小或最大的元素“浮”到顶端,最终达到完全有序。
快速排序 范围T(n) = O(n*lg n) ~ O(n^2) | 平均T(n) = O(n*lg n)
快速排序采用了分治(递归)的方法,该方法的基本思想是:
先从数列中取出一个数作为基准数
分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边
再对左右区间重复第二步,直到各区间只有一个数
直接选择排序 T(n) = O(n^2)
直接选择排序(Straight Select Sorting) 也是一种简单的排序方法,它的基本思想是:
1. 从R[0]~R[n-1]中选取最小值,与R[0]交换
2. 从R{1}~R[n-1]中选取最小值,与R[1]交换
3. 第i次从R[i-1]~R[n-1]中选取最小值,与R[i-1]交换
堆选择排序 T(n) = O(n*log2n)
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。堆分为大根堆和小根堆,下图为小根堆:
「如图所示依次类推」
归并排序 T(n) = O(n*log2n)
归并排序是建立在归并操作上的一种有效的排序算法,采用了分治思想。如下图的二路归并:
基数排序
基数排序(radix sort)属于「分配式排序」,有点类似 「桶排」。
1. 分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,将桶里的数字顺序取出来
2. 再次入桶,不过这次以十位数的数字为准,进入相应的桶,同一桶内有序
3. 再次取出,排序完成
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26