
Google用数据分析中国跨境电商发展趋势
十年来,互联网已成为跨境电商发展的重要驱动力。Google 作为全球互联网行业的先行者,坚持为中国的企业提供前沿的数字营销理念以及全方位的数字营销解决方案和服务,帮助中国企业精准定位国际市场,推动中国跨境电商的整体成长。
从 07 年至今,在 Google 上与「进出口」相关的搜索中,中国最受关注。这体现了世界对一个国家进出口的关注程度。在过去几年中,「中国」很明显的形成了一条上扬的曲线。它的关注度,是位于第二名的美国的八倍之多。
下一个十年,跨境电商路在何方?
通过对数据的分析,Google 提出未来十年跨境电商的五大趋势和变化,而其中有一些变化正在发生。
趋势 1: 从卖给「所有人」到卖给「一些人」
从卖给「所有人」到卖给「一些人」,即定位的变化。在跨境电子商务刚刚兴起的几年里,海内外价格差是选择商品的唯一信号。那个时期的网站,从热卖商品到网站设计,再到季节性促销,都出奇的一致。一个网站里基本也集合了所有热卖商品,婚纱,手机,配件,水龙头,奇怪地组合在一起。「卖给所有人」的时代正在远去。
如今的跨境电商已进入一个精细化、垂直化竞争的时代。目标群体的定位也越来越清晰。他们喜欢什么,喜欢什么时候买,都要能了如指掌。
趋势 2: 从大规模制造到小规模定制
在「工业 4.0」时代,物联网、智能化等新技术正在提高制造业水平,制造业正向智能化转型,用户需求决定生产制造,传统供应链向柔性供应链转变。
以服装业为例,以前衣服从设计到打版、定型,需要半年的时间,然后采购物料,进入生产流程,到进入流通渠道,基本需要 20 个月。近年来,「快时尚」风靡全球,它反映在对潮流的快速响应,从捕捉时尚潮流到将产品送到消费者手中所用的时间短。这样的生产方式,便于企业迅速收集市场反馈数据,并基于数据做进一步的产品发展决策。受互联网影响的小而快的生产模式正在对制造业产生更深刻的变革。甚至可以在用户需求明确以后才进行生产。现在 50 件起订,7 天快速生产的服装企业正应运而生。
趋势 3:从卖白牌到卖品牌
如果过去十年,主要竞争的是山寨、无品牌产品,那么跨境电商的下一个十年将进入品牌的竞争,未来最终会进入一个跨境电商的品牌时代。小而美的品牌将会在跨境电商竞争中拥有重要的位置。
以服装行业搜索行为变化为例。服饰类一般关键字的搜索基本比较平稳,主要是季节性的波动。而品牌关键字的搜索却直线上升。2007 年服装类的热门搜索词中,每 300 个搜索中会有 1 个中国服装的网站,而到了 2015 年,每 10 个搜索就有 1 个中国服装网站品牌。
趋势 4: 从硬广告到软沟通
从营销的角度看,未来最重要的一个趋势就是,广告正在消失——那些旗帜鲜明的「硬广告」正在消失,广告正在以「沟通」的形式融入到你的生活。在移动时代,无论何时何地、遇到何种状况,人们通过使用手机即时解决问题的时刻;也就是消费者产生学习、探索、观看、查找或购买意愿时,习惯于通过智能电话这类最贴身的移动设备达到目的、满足需求的时刻。
在过去,消费者将其转变为现实需要经历几天、几个星期甚至几个月的时间;因此过去的市场营销人员设计、从事营销活动时更专注于培养消费者的品牌意识和忠诚度,希望他们从购买意向到购买决定之间能够以此为导向。而当今的消费者从产生消费需求到实际购买可以在很短的时间内完成,这一瞬间就可能导致整个营销活动的成功或失败。
趋势 5: 从卖欧美到赢全球
未来十年,跨境电商将真正走向全球。跨境电商在过去的竞争主要集中在欧美英语市场,但未来的竞争格局会大不同。在零售电商领域,亚太区的销售额现已超越美国和欧洲,位居全球第一。而拉丁美洲、中东等区域,他们的增长率将在 2020 年达到 30%,是美国和欧洲的两倍。
据统计,跨境电商的主要投资市场和投资幅度增长最快的市场有显著不同。他们的投资市场,除去美国,澳大利亚,加拿大之外,还有三个最大的欧洲市场以及一些亚洲市场。而从增长最快的市场来看,中东地区占据着显著的位置。在前五名中,就有三个是中东国家,且增长率超过 100%。
由此,过去的跨境电商竞争基本是以廉价商品、粗放竞争为主的。而现在,跨境电商的竞争已经转型,市场洞察、数据分析、营销策略将在竞争中起到越来越重要的地位。为了更好的服务中国的跨境电商企业,Google 在五年前设置了专门的「Google 出口顾问」来为客户提供深度市场分析,网站用户体验咨询以及营销方案优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11