
1. 引言
最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的。目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧。matlab直接集成了很多算法工具箱,函数查询、调用、变量查询等非常方便,或许以后用久了python也会感觉很好用。与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便。
言归正传,做算法要用到很多的向量和矩阵运算操作,这些嘛在matlab里面已经很熟悉了,但用python的时候需要用一个查一个,挺烦的,所以在此稍作总结,后续使用过程中会根据使用体验更新。
python的矩阵运算主要依赖numpy包,scipy包以numpy为基础,大大扩展了后者的运算能力。
2. 创建一般的多维数组
import numpy as np
a = np.array([1,2,3], dtype=int) # 创建1*3维数组 array([1,2,3])
type(a) # numpy.ndarray类型
a.shape # 维数信息(3L,)
a.dtype.name # 'int32'
a.size # 元素个数:3
a.itemsize #每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int) # 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape # 维数信息(2L,3L)
b.size # 元素个数:6
b.itemsize # 每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16') # 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape # 维数信息(2L,3L)
c.size # 元素个数:6
c.itemsize # 每个元素所占用的字节数目:2
c.ndim # 维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex) # 复数二维数组
d.itemsize # 每个元素所占用的字节数目:16
d.dtype.name # 元素类型:'complex128'
3. 创建特殊类型的多维数组
a1 = np.zeros((3,4)) # 创建3*4全零二维数组
输出:
array([[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])
a1.dtype.name # 元素类型:'float64'
a1.size # 元素个数:12
a1.itemsize # 每个元素所占用的字节个数:8
a2 = np.ones((2,3,4), dtype=np.int16) # 创建2*3*4全1三维数组
a2 = np.ones((2,3,4), dtype='int16') # 创建2*3*4全1三维数组
输出:
array([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]], dtype=int16)
a3 = np.empty((2,3)) # 创建2*3的未初始化二维数组
输出:(may vary)
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
a4 = np.arange(10,30,5) # 初始值10,结束值:30(不包含),步长:5
输出:array([10, 15, 20, 25])
a5 = np.arange(0,2,0.3) # 初始值0,结束值:2(不包含),步长:0.2
输出:array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
from numpy import pi
np.linspace(0, 2, 9) # 初始值0,结束值:2(包含),元素个数:9
输出:
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
x = np.linspace(0, 2*pi, 9)
输出:
array([ 0. , 0.78539816, 1.57079633, 2.35619449, 3.14159265,
3.92699082, 4.71238898, 5.49778714, 6.28318531])
a = np.arange(6)
输出:
array([0, 1, 2, 3, 4, 5])
b = np.arange(12).reshape(4,3)
输出:
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
c = np.arange(24).reshape(2,3,4)
输出:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
4. 多维数组的基本操作
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a = np.arange(4)
输出:
array([0, 1, 2, 3])
b = a**2
输出:
array([0, 1, 4, 9])
c = 10*np.sin(a)
输出:
array([ 0. , 8.41470985, 9.09297427, 1.41120008])
n < 35
输出:
array([ True, True, True, True], dtype=bool)
A = np.array([[1,1],[0,1]])
B = np.array([[2,0],[3,4]])
C = A * B # 元素点乘
输出:
array([[2, 0],
[0, 4]])
D = A.dot(B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
E = np.dot(A,B) # 矩阵乘法
输出:
array([[5, 4],
[3, 4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
a = np.ones((2,3),dtype=int) # int32
b = np.random.random((2,3)) # float64
b += a # 正确
a += b # 错误
a = np.ones(3,dtype=np.int32)
b = np.linspace(0,pi,3)
c = a + b
d = np.exp(c*1j)
输出:
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a = np.random.random((2,3))
a.sum()
a.min()
a.max()
b = np.arange(12).reshape(3,4)
输出:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
b.sum(axis=0) # 按列求和
输出:
array([12, 15, 18, 21])
b.sum(axis=1) # 按行求和
输出:
array([ 6, 22, 38])
b.cumsum(axis=0) # 按列进行元素累加
输出:
array([[ 0, 1, 2, 3],
[ 4, 6, 8, 10],
[12, 15, 18, 21]])
b.cumsum(axis=1) # 按行进行元素累加
输出:
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
universal functions
B = np.arange(3)
np.exp(B)
np.sqrt(B)
C = np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
5. 数组索引、切片和迭代
a = np.arange(10)**3
a[2]
a[2:5]
a[::-1] # 逆序输出
for i in a:
print (i**(1/3.))
def f(x,y):
return 10*x+y
b = np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c = np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[ 0, 1, 2],
[ 10, 11, 12]],
[[100, 101, 102],
[110, 111, 112]]])
c.shape
输出:
(2L, 2L, 3L)
c[0,...]
c[0,:,:]
输出:
array([[ 0, 1, 2],
[10, 11, 12]])
c[:,:,2]
c[...,2]
输出:
array([[ 2, 12],
[102, 112]])
for row in c:
print(row)
for element in c.flat:
print(element)
a = np.floor(10*np.random.random((3,4)))
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
a.ravel()
输出:
array([ 3., 9., 8., ..., 6., 0., 2.])
a.reshape(6,2)
输出:
array([[ 3., 9.],
[ 8., 4.],
[ 2., 1.],
[ 4., 6.],
[ 0., 6.],
[ 0., 2.]])
a.T
输出:
array([[ 3., 2., 0.],
[ 9., 1., 6.],
[ 8., 4., 0.],
[ 4., 6., 2.]])
a.T.shape
输出:
(4L, 3L)
a.resize((2,6))
输出:
array([[ 3., 9., 8., 4., 2., 1.],
[ 4., 6., 0., 6., 0., 2.]])
a.shape
输出:
(2L, 6L)
a.reshape(3,-1)
输出:
array([[ 3., 9., 8., 4.],
[ 2., 1., 4., 6.],
[ 0., 6., 0., 2.]])
详查以下函数:
ndarray.shape, reshape, resize, ravel
6. 组合不同的多维数组
a = np.floor(10*np.random.random((2,2)))
输出:
array([[ 5., 2.],
[ 6., 2.]])
b = np.floor(10*np.random.random((2,2)))
输出:
array([[ 0., 2.],
[ 4., 1.]])
np.vstack((a,b))
输出:
array([[ 5., 2.],
[ 6., 2.],
[ 0., 2.],
[ 4., 1.]])
np.hstack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
from numpy import newaxis
np.column_stack((a,b))
输出:
array([[ 5., 2., 0., 2.],
[ 6., 2., 4., 1.]])
a = np.array([4.,2.])
b = np.array([2.,8.])
a[:,newaxis]
输出:
array([[ 4.],
[ 2.]])
b[:,newaxis]
输出:
array([[ 2.],
[ 8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4., 2.],
[ 2., 8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[ 4.],
[ 2.],
[ 2.],
[ 8.]])
np.r_[1:4,0,4]
输出:
array([1, 2, 3, 0, 4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1, 2, 3, 0, 0, 0, 4, 5, 6]])
详细使用请查询以下函数:
hstack, vstack, column_stack, concatenate, c_, r_
7. 将较大的多维数组分割成较小的多维数组
a = np.floor(10*np.random.random((2,12)))
输出:
array([[ 9., 7., 9., ..., 3., 2., 4.],
[ 5., 3., 3., ..., 9., 7., 7.]])
np.hsplit(a,3)
输出:
[array([[ 9., 7., 9., 6.],
[ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.],
[ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.],
[ 3., 9., 7., 7.]])]
np.hsplit(a,(3,4))
输出:
[array([[ 9., 7., 9.],
[ 5., 3., 3.]]), array([[ 6.],
[ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.],
[ 7., 5., 0., ..., 9., 7., 7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
8. 多维数组的复制操作
a = np.arange(12)
输出:
array([ 0, 1, 2, ..., 9, 10, 11])
not copy at all
b = a
b is a # True
b.shape = 3,4
a.shape # (3L,4L)
def f(x) # Python passes mutable objects as references, so function calls make no copy.
print(id(x)) # id是python对象的唯一标识符
id(a) # 111833936L
id(b) # 111833936L
f(a) # 111833936L
浅复制
c = a.view()
c is a # False
c.base is a # True
c.flags.owndata # False
c.shape = 2,6
a.shape # (3L,4L)
c[0,4] = 1234
print(a)
输出:
array([[ 0, 1, 2, 3],
[1234, 5, 6, 7],
[ 8, 9, 10, 11]])
s = a[:,1:3]
s[:] = 10
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
深复制
d = a.copy()
d is a # False
d.base is a # False
d[0,0] = 9999
print(a)
输出:
array([[ 0, 10, 10, 3],
[1234, 10, 10, 7],
[ 8, 10, 10, 11]])
numpy基本函数和方法一览
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like
Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack
Questionsall, any, nonzero, where
Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
Basic Statistics
cov, mean, std, var
Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot
完整的函数和方法一览表链接:
9. 特殊的索引技巧
a = np.arange(12)**2
输出:
array([ 0, 1, 4, ..., 81, 100, 121])
i = np.array([1,1,3,8,5])
a[i]
输出:
array([ 1, 1, 9, 64, 25])
j = np.array([[3,4],[9,7]])
a[j]
输出:
array([[ 9, 16],
[81, 49]])
palette = np.array([[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]])
image = np.array([[0,1,2,0],[0,3,4,0]])
palette[image]
输出:
array([[[ 0, 0, 0],
[255, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]],
[[ 0, 0, 0],
[ 0, 0, 255],
[255, 255, 255],
[ 0, 0, 0]]])
i = np.array([[0,1],[1,2]])
j = np.array([[2,1],[3,3]])
a[i,j]
输出:
array([[ 2, 5],
[ 7, 11]])
l = [i,j]
a[l]
输出:
array([[ 2, 5],
[ 7, 11]])
a[i,2]
输出:
array([[ 2, 6],
[ 6, 10]])
a[:,j]
输出:
array([[[ 2, 1],
[ 3, 3]],
[[ 6, 5],
[ 7, 7]],
[[10, 9],
[11, 11]]])
s = np.array([i,j])
print(s)
array([[[0, 1],
[1, 2]],
[[2, 1],
[3, 3]]])
a[tuple(s)]
输出:
array([[ 2, 5],
[ 7, 11]])
print(tupe(s))
输出:
(array([[0, 1],
[1, 2]]), array([[2, 1],
[3, 3]]))
10. 寻找最大值/最小值及其对应索引值
time = np.linspace(20, 145, 5)
输出:
array([ 20. , 51.25, 82.5 , 113.75, 145. ])
data = np.sin(np.arange(20)).reshape(5,4)
输出:
array([[ 0. , 0.84147098, 0.90929743, 0.14112001],
[-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ],
[ 0.98935825, 0.41211849, -0.54402111, -0.99999021],
[-0.53657292, 0.42016704, 0.99060736, 0.65028784],
[-0.28790332, -0.96139749, -0.75098725, 0.14987721]])
ind = data.argmax(axis=0)
输出:
array([2, 0, 3, 1], dtype=int64)
time_max = time[ind]
输出:
array([ 82.5 , 20. , 113.75, 51.25])
data_max = data[ind, xrange(data.shape[1])]
输出:
array([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 ])
np.all(data_max == data.max(axis=0))
输出:
True
a = np.arange(5)
a[[1,3,4]] = 0
print(a)
输出:
array([0, 0, 2, 0, 0])
a = np.arange(5)
a[[0,0,2]] = [1,2,3]
print(a)
输出:
array([2, 1, 3, 3, 4])
a = np.arange(5)
a[[0,0,2]] += 1
print(a)
输出:
array([1, 1, 3, 3, 4])
a = np.arange(12).reshape(3,4)
b = a > 4
输出:
array([[False, False, False, False],
[False, True, True, True],
[ True, True, True, True]], dtype=bool)
a[b]
输出:
array([ 5, 6, 7, 8, 9, 10, 11])
a[b] = 0
print(a)
输出:
array([[0, 1, 2, 3],
[4, 0, 0, 0],
[0, 0, 0, 0]])
a = np.arange(12).reshape(3,4)
b1 = np.array([False,True,True])
b2 = n.array([True,False,True,False])
a[b1,:]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[b1]
输出:
array([[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
a[:,b2]
输出:
array([[ 0, 2],
[ 4, 6],
[ 8, 10]])
a[b1,b2]
输出:
array([ 4, 10])
11. ix_() function
a = np.array([2,3,4,5])
b = np.array([8,5,4])
c = np.array([5,4,6,8,3])
ax,bx,cx = np.ix_(a,b,c)
print(ax) # (4L, 1L, 1L)
输出:
array([[[2]],
[[3]],
[[4]],
[[5]]])
print(bx) # (1L, 3L, 1L)
输出:
array([[[8],
[5],
[4]]])
print(cx) # (1L, 1L, 5L)
输出:
array([[[5, 4, 6, 8, 3]]])
result = ax + bx*cx
输出:
array([[[42, 34, 50, 66, 26],
[27, 22, 32, 42, 17],
[22, 18, 26, 34, 14]],
[[43, 35, 51, 67, 27],
[28, 23, 33, 43, 18],
[23, 19, 27, 35, 15]],
[[44, 36, 52, 68, 28],
[29, 24, 34, 44, 19],
[24, 20, 28, 36, 16]],
[[45, 37, 53, 69, 29],
[30, 25, 35, 45, 20],
[25, 21, 29, 37, 17]]])
result[3,2,4]
输出:17
12. 线性代数运算
a = np.array([[1.,2.],[3.,4.]])
a.transpose() # 转置
np.linalg.inv(a) # 求逆
u = np.eye(2) # 产生单位矩阵
np.dot(a,a) # 矩阵乘积
np.trace(a) # 求矩阵的迹
y = np.array([5.],[7.]])
np.linalg.solve(a,y) # 求解线性方程组
np.linalg.eig(a) # 特征分解
“Automatic” Reshaping
a = np.arange(30)
a.shape = 2,-1,3
a.shape # (2L, 5L, 3L)
print(a)
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
x = np.arange(0,10,2)
y = np.arange(5)
m = np.vstack([x,y])
输出:
array([[0, 2, 4, 6, 8],
[0, 1, 2, 3, 4]])
n = np.hstack([x,y])
输出:
array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
13. 矩阵的创建
a = np.array([1,2,3])
a1 = np.mat(a)
输出:
matrix([[1, 2, 3]])
type(a1)
输出:
numpy.matrixlib.defmatrix.matrix
a1.shape
输出:
(1L, 3L)
a.shape
输出:
(3L,)
b=np.matrix([1,2,3])
输出:
matrix([[1, 2, 3]])
from numpy import *
data1 = mat(zeros((3,3)))
data2 = mat(ones((2,4)))
data3 = mat(random.rand(2,2))
data4 = mat(random.randint(2,8,size=(2,5)))
data5 = mat(eye(2,2,dtype=int))
14. 常见的矩阵运算
a1 = mat([1,2])
a2 = mat([[1],[2]])
a3 = a1 * a2
print(a3)
输出:
matrix([[5]])
print(a1*2)
输出:
matrix([[2, 4]])
a1 = mat(eye(2,2)*0.5)
print(a1.I)
输出:
matrix([[ 2., 0.],
[ 0., 2.]])
a1 = mat([[1,2],[2,3],[4,2]])
a1.sum(axis=0)
输出:
matrix([[7, 7]])
a1.sum(axis=1)
输出:
matrix([[3],
[5],
[6]])
a1.max() # 求矩阵元素最大值
输出:
4
a1.min() # 求矩阵元素最小值
输出:
1
np.max(a1,0) # 求矩阵每列元素最大值
输出:
matrix([[4, 3]])
np.max(a1,1) # 求矩阵每行元素最大值
输出:
matrix([[2],
[3],
[4]])
a = mat(ones((2,2)))
b = mat(eye((2)))
c = hstack((a,b))
输出:
matrix([[ 1., 1., 1., 0.],
[ 1., 1., 0., 1.]])
d = vstack((a,b))
输出:
matrix([[ 1., 1.],
[ 1., 1.],
[ 1., 0.],
[ 0., 1.]])
15. 矩阵、数组、列表之间的互相转换
aa = [[1,2],[3,4],[5,6]]
bb = array(aa)
cc = mat(bb)
cc.getA() # 矩阵转换为数组
cc.tolist() # 矩阵转换为列表
bb.tolist() # 数组转换为列表
# 当列表为一维时,情况有点特殊
aa = [1,2,3,4]
bb = array(aa)
输出:
array([1, 2, 3, 4])
cc = mat(bb)
输出:
matrix([[1, 2, 3, 4]])
cc.tolist()
输出:
[[1, 2, 3, 4]]
bb.tolist()
输出:
[1, 2, 3, 4]
cc.tolist()[0]
输出:
[1, 2, 3, 4]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27