
我最近在学习R语言,但是估R语言我应该没能跟sas一样玩那么好。今天来更新在机器学习中的一些专业术语,例如一些损失函数,正则化,核函数是什么东西。
损失函数:损失函数是用来衡量模型的性能的,通过预测值和真实值之间的一些计算,得出的一个值,这个值在模型拟合的时候是为了告诉模型是否还有可以继续优化的空间(模型的目的就是希望损失函数是拟合过的模型中最小的),损失函数一般有以下几种,为什么损失函数还有几种呢,因为不同的算法使用的损失函数有所区分。
1
0-1损失函数:
这个损失函数的含义,是最简单的,预测出来的分类结果跟真实对比,一样的返回1,不一样返回0,这种方式比较粗暴,因为有时候是0.999的时候,其实已经很接近了,但是按照这个损失函数的标准,还是返回0,所以这个损失函数很严格,严格到你觉得特别没有人性。
2
感知损失函数
那么这个感知损失函数,其实是跟混淆矩阵那种算法是一样,设定一个阀值,假设真实值与预测值之间的差距超过这个阀值的话,就是1,小于的话就是0,这种就多多少少弥补了0-1损失函数中的严格,假设以0.5为界限,那么比0.5大的我们定义为坏客户,小于0.5定义为坏客户,假设用这种方式,那么大部分好客户聚集在0.6,以及大部分好客户聚集在0.9这个位置,感知损失函数,判断的时候可能是差不多的效果。但是很明显两个模型的效果是,后者要好。当然你在实际的做模型的时候也不会单靠一个损失函数衡量模型啦,只是你在拟合的时候可能使用的损失函数来拟合出机器觉得是最优的。
3
Hinge损失函数
Hinge损失函数是源自于支持向量机中的,因为支持向量机中,最终的支持向量机的分类模型是能最大化分类间隔,又减少错误分类的样本数目,意味着一个好的支持向量机的模型,需要满足以上两个条件:1、最大化分类间隔,2、错误分类的样本数目。错误分类的样本数目,就回到了损失函数的范畴。
我们看上面这张图:把这四个点,根据下标分别叫1、2、3、4点,可以看到hinge衡量的是该错误分类的点到该分类的分类间隔线之间的距离,像1点,他虽然没有被正确分类,但是是在分类间隔中,所以他到正确被分类的线的距离是小于1的(分类间隔取的距离是1),那么像2,3,4点他们到正确的分类间隔的距离都是超过1,正确分类的则置为0,那么回到上面的公式,支持向量机中,分类使用+1,-1表示,当样本被正确分类,那么就是0,即hinge的值为0,那么如果在分隔中的时候,hinge的值为1-真实值与预测值的积。举个例子,当真实值yi是1,被分到正确分类的分类间隔之外,那么yi=1,>1,那么这时候即样本被正确分类hinge值则为0。那么如果是被错误分类,则hinge值就是大于1了。这就是hinge损失函数啦。
4
交叉熵损失函数
这个函数是在逻辑回归中最大化似然函数推出来,在公式层面的理解,可以看到就是计算样本的预测概率为目标值的概率的对数。这个你不想听公式推导也看下去啦,因为这对于优化问题的理解可以更深刻。
以上的公式中的h(x)代表的样本是目标值的概率,那么模型最极端的预测是什么,y=1的样本的h(x)都为1,y=0的样本的h(x)都是0,那么你这个模型的正确率就是100%,但在实际建模中这个可能性是极低的,所以这时候使用最大似然估计将全部的样本的预测值连乘,那么这时候意味着对于y=1的样本,h(x)的值越大越好,y=0的时候h(x)的值越小越好即1-h(x)的值越大越好,这时候似然估计这种相乘的方式貌似很难衡量那个模型是最好的,所以加上log函数的转化之后再加上一个负号,全部的项变成相加,这时候我们只要求得-ln(l())最小就可以了。这就是交叉熵损失函数。那么这里你可能会问,为什么用的是log,不是用什么exp,幂函数这些,因为log是单调递增的,在将式子从相乘转成相加的同时,又保证了数值越大,ln(x)的值越大。
5
平方误差
平方差,这个大家很熟啦,线性回归很爱用这个,这个衡量线性关系的时候比较好用,在分类算法中比较少用。
6
绝对误差
那么这个也是回归中比较常用的,也不做多的解释。
7
指数误差
这是adaboosting中的一个损失函数,假设目标变量还是用-1,1表示,那么就以为在上面的公式中,当yi=1的时候,就希望越大越好,即越小越好,同样可推当yi=0的时候。思想跟逻辑回归类似,但是因为这里使用-1,1表示目标变量,所以损失函数有些区别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25