
OLTP类系统数据结转最佳实践
一、 背景介绍
业务系统在长期运行的过程中会积累大量的数据,这些数据有些是需要长期保存的,例如一些订单数据,有些只需要短期保存,例如一些日志信息。业务数据一般都会有一个生命周期,生命周期内的我们叫生产数据,生命周期之外(即业务已经关闭)的叫历史数据,我们这里提到的数据结转,指的是将需要长期保存的历史数据从生产库迁移到历史库(转),而将需要短期保存的数据定期删除(结)。
我们已经进入了大数据时代,但在OLTP类系统中,关系型数据库依然占据主导地位,在关系型数据库中,如果不及时进行数据结转,会严重影响系统的性能。
关系型数据库单机容量有限,因此业界普遍的做法是进行垂直分库和水平分片,一些大型互联网企业由于业务量庞大,仅分片的集群规模就能达到上千节点,再加上分库的集群,规模非常巨大。传统的数据归档方法往往针对单库操作,难以处理如此大规模集群的数据归档。
同时,在大型互联网企业,每日的数据增长量非常大,数据结转的频率远大于传统行业,这些行业的IT系统往往是7*24小时不间断提供服务,而且全天24小时的并发量都很大,因此数据结转操作必须尽量减少对生产库的性能影响。
为此,我们自主研发了数据结转平台,以解决大数据背景下的数据结转问题。
二、 技术架构
2.1 设计要点
(1)尽量减少对生产库的影响
数据结转操作没有复杂的业务逻辑,因此对数据库性能的影响主要体现在IO方面,减少对生产库的影响,最主要的就是减少对生产库的IO操作。目前我们采用的方案是通过从库查询数据,将数据插入历史库,然后再从主库中删除,如图1数据结转逻辑图所示,将查询的IO操作转嫁到从库上,可以大大减轻对主库的影响。为了保障数据库的高可用,业内基本都采用了主从部署模式,因此这个方案具有很高的通用性。
图1 数据结转逻辑图
(2)支持分库分片集群
我们希望数据结转平台的配置足够简单并且易于理解。在和用户的沟通过程中,我们发现他们最强烈的需求就是分库分片集群的数据结转。传统的单机数据结转操作可以抽象描述为:将数据库实例A中表B的历史数据结转到历史库C,用户的配置主要有4个元素:生产库实例A、结转表B、结转条件和历史库。对于大规模的分库分片集群规模,如果采用传统单机数据结转的配置方式,每一个数据库实例都要配置4个元素,配置量非常大。
在我们的方案中,按照图2所示对数据库集群进行划分,将主库、从库、历史库作为一个结转单元,对于分片的数据库集群,表结构相同,我们将其作为一个分组,对于分库的集群,表结构不同则划分为不同的分组。用户进行配置的时候不是面向一个数据库实例,而是面向一个分组,数据结转操作抽象为:结转分组X中表B的历史数据,用户的配置元素有3个:分组X、结转表B和结转条件。分组信息仅需配置一次。这样大大简化了用户的配置工作。
(3)支持水平扩展
由于数据库集群规模较大,数据结转平台应该具备水平扩展能力。我们采用的方案是将数据结转最核心的组件定时任务和数据库操作(数据结转执行器)独立出来,进行分布式部署。如下图3所示,
图2 数据库集群模型
配置中心为用户的入口,用户通过配置中心定义数据结转任务,任务的关键属性包括:触发条件、执行条件、目标分组等,配置中心将结转任务分发给代理程序,同时对代理程序的执行状态进行监控。结转任务的触发条件配置在代理程序中的定时任务中,而执行条件和目标分组则作为数据结转执行器的执行参数。通过水平扩展代理程序,我们对更多的数据库进行结转。
图3 数据结转组件关系图
2.2 总体架构
综合上面提到的3个设计要点,我们得到图4所示的总体架构,需要特别说明的是,对于水平分片的分组,我们采用的是多线程结转,对于不同结转单元不存在数据共享问题,所以无需考虑并发锁等问题。
三、 一些经验总结
a) 配置中心与代理程序之间的信息同步
图4 数据结转总体架构图
配置中心和代理程序在我们的方案中被设计为一种松耦合结构:在系统的运行过程中,代理程序宕机不会影响配置中心的运行,同样配置中心短暂的不可用也不会影响代理程序的运行。松耦合结构可以大大增强系统的可用性,而且配置中心、代理程序升级的时候不会影响整个系统的正常运行。
为了实现松耦合的结构,配置中心与代理程序之间的信息同步我们都是采用的异步处理,比如配置中心向代理程序分发结转任务,实际处理的时候我们采用的是拉的方式,而不是推的方式,我们在配置中心和代理程序之间维持了一个心跳,心跳的内容是代理程序负载的所有结转任务的校验码(该校验码在代理程序向配置中心发送心跳信息时由配置中心计算),当代理程序发现从配置中心得到的校验码和本地校验码不同时,则说明用户对结转任务进行了修改(包括新增、修改、删除),此时代理程序主动向配置中心发起同步结转任务的请求。这样做的好处是,代理程序在发生宕机重启后,会自动进行任务的同步。
b) 进度可视化
结转任务的进度在我们的方案中是实时汇总到配置中心的,我们称为进度可视化,代理程序通过一个独立的线程来异步处理进度可视化,一方面这样可以降低对结转任务性能的干扰,另一方面可以避免由于网络问题、配置中心暂时不可用等问题导致结转任务异常。进度可视化对于用户来说非常重要,用户在第一次定义结转任务并执行该任务的时候,进度可视化信息是用户和系统互动的唯一窗口,对用户来说是莫大的心理安慰。
c) 异常可视化
代理程序在执行数据结转任务时,会遇到各种异常信息,比如数据库URL配置错误,历史库生产库表结构不一致等,对于这些异常信息,除了在本地记录日志外,我们还将它们发送到了配置中心。将这些异常可视化,而不是让用户在大量的日志中去检索,这种方式非常便于在线问题的诊断。
d) 事务一致性
将生产库数据转到历史库本身是一个分布式的事务,在我们的方案中,不能保证数据的强一致性,比如在历史数据Insert到历史库的瞬间,用户修改了生产库的数据,我们的方案不会检测这种变化,会导致用户的修改并不会反映到历史库中,造成数据不一致。虽然在生产库中删除历史数据时,可以增加强一致性的校验,以解决这种问题,但是这样会对生产库造成一定的压力,同时考虑到这种情况发生的概率极低,因此并没有进行特殊处理。
历史数据Insert到历史库后,可能由于某种异常导致生产库执行Delete操作时失败,此时会造成数据冗余(生产库和历史库存在相同数据)。对于这种问题,我们的方案是利用Redo Log(重做日志)机制,在结转任务重新执行时根据Redo Log恢复异常现场,纠正异常数据。
e) 结转数据的回滚
我们提供了一个数据回滚功能,可以将已经结转到历史库的数据逆向回滚到生产库,用户可以配置Where条件精确指定需要回滚的数据。有些特殊情况,业务上需要对已经结转的历史数据进行修改,该功能主要用于处理这种情况。同时在测试阶段,我们可以通过该功能快速恢复测试数据,方便对数据结转平台的测试。
f) 代理程序的自动升级
代理程序和配置中心本质上是一种典型的C/S(客户端/服务端)结构,客户端是多实例部署,服务器端是集群部署,为了系统能够平滑地进行升级,我们需要对客户端的版本进行统一管理,同时我们提供了代理程序的自动升级功能,系统管理员可以通过配置中心对代理程序部署实例进行升级。自动升级功能,统一了代理程序的版本,使得我们可以不用被兼容性问题羁绊,是我们能够进行快速迭代开发有力支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14