京公网安备 11010802034615号
经营许可证编号:京B2-20210330
咨询顾问是如何做数据分析和行业研究的
每天,商业社会都需要大量的数据行为分析,IBanker以及高级咨询顾问们在分析收购方案的可行性时,背后也离不开“核心”财务以及运营数据的支撑。数据分析能力显然已经名列2018年各大行业通杀技能之一。
咨询顾问的数据分析能力是什么水平?
在项目上,就是贴身为客户服务,满足客户的各种在商业范围内但在项目范围内外的各种需求。因为咨询一直要面临的挑战是:100多页ppt为啥价值几百万甚至过千万。卖项目的合伙人以及负责项目的经理管理客户的项目范围(俗称scope)的能力非常重要,直接决定整个项目组的生活及工作质量。
对许多咨询项目来说,数据分析可能只占据项目10%-20%的比重,出于决策支撑的目的而进行,而非单纯依赖数据给出咨询建议。但是顾问工作也依然对数据分析能力有一些基本的要求,原因在于几乎任何一名顾问都会在日常工作中需要独立地承担以下一些工作:
通过一定数据整理与分析,量化概括并分析公司经营现状或某职能部门的业务现状,整理并观察数据,了解目前客户业务问题最严重的领域/地区/流程等
寻找合适的数据并计算结果,支撑你对客户当前业务问题的分析结论
帮助客户构建业务模型(business case),评估业务方案的投资回报率(ROI)
依据业务数据的变化与趋势,评估业务方案试运行的效果
对于非数据分析类的项目所涉及到的数据分析工作一般都采用excel等常用工具进行,数据量也一般在几百k-几M不等(假如是不带格式的excel表格的话,几十M对于非数据分析专家的管理咨询顾问来说已经是相当大量的数据了,绝不会在非数据分析类项目中莫名其妙弄个GB/TB级别的数据扔给管理咨询顾问……),因此并不需要十分专业的数据分析技能与经验。
但是反过来说,没有这些相对基本的数据分析工作作为支撑,那么顾问所完成的业务方案往往就会缺乏最基本的支撑与依据,可信度大打折扣,很可能会导致客户的不信任,从而影响项目的完成。
咨询行业的核心能力是什么?
良好的倾听用于明晰客户的需求;
结构化的思维用于分析客户的问题;
顺畅的表达将solution 100% 的传递给客户。
当然,分析问题的时候可能还需要research能力不错,research的时候可能还需要英文不错(查看国外网站及英文资料),展示solution的时候需要PPT逻辑不错,这样才易于让客户理解。数据分析的结果就是作为支撑与依据,提升可信度。
而作为咨询顾问,最核心的能力其实是【沟通能力】+【逻辑能力】。
对于传统的管理咨询(例如MBB的战略咨询)来说,通常项目周期较短(6个月以内),项目组成员较少(3-5人),交付物为 PPT,由于项目时间较短且内容专注于高阶设计层面,所以通常要求顾问具有快速学习的能力+统揽全局框架化看待问题的能力。
而对于特定领域的咨询,比如 IT 咨询,这类咨询通常项目周期时间较长(IT 战略规划+落地实施,以年为单位计算),项目组成员较多(IT 咨询落地实施时甚至有可能50人以上),交付物为实际可运行上线的系统,所以项目上更多的工作可能是项目管理,更关注执行层面、细节层面的东西:与技术人员的沟通、协调等等,因此会 prefer 有技术背景的同学,毕竟你要一个学商科的同学去和写代码的大神谈战略,大神会蒙掉的。
咨询公司常用的工具有哪些?
大公司内部都是分专业的,有专门的analytics团队负责技术实现,因此对于咨询顾问来说,更重要的是做数据分析:
数据分析首先是一个工具,这个工具服务于商业模式,做商业决策的。而咨询行业最大的优势在于见多识广,对不同商业模式都有着hands on experience,更能知道什么数据有用,怎样做一个合理的假设。
对于前台的consultant来说,做分析的时候Excel肯定是最常用的,且使用的深度非常高,绝不是简单的写写公式或者vlookup、pivotable,会用到一些专用插件比如solver。这样也容易把成果向客户进行知识转移。
如果是需要大量的数据,很多时候会通过后台部门的同事,用R,python这些软件来处理和分析。但其实这些软件的主要优势在于(大量)数据的收集和处理,而不是数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12