京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据处理能力达到巅峰的最佳时机
大数据管理现在已经成为企业开发社区中的一大热门话题。但为什么大数据的讨论成为一种现象会为这么晚?为什么过去大数据处理没有成为企业工具集的一部分,是不是现在的信息技术生态系统使得大数据解决方案变得如此的明智。
大数据管理如此流行的一个关键原因是,无需言明,多数组织不得不对处理日益增长的数据进行管理。从互联网搜索引擎,到庞大信息量的检索,再到基因科学或大气科学的研究项目,人们关注并尝试的数据量变得越来越庞大。曾经兆字节数据的处理就是很惊人的期望,但与现在组织面临的千万兆字节相比,就变得苍白无力了。
处理能力是关键。一方面它要有能力存储巨大量的数据;另一方面它要能够进行处理。毕竟,如果它不能挖掘出来,但用什么来存储数据?谈到数据挖掘,我们讲的心比挖掘煤矿还快的速度处理数据。如果我们不能在合理的时间内,从数据中找到有意义信息,那么它就是无用的。
现在,管理大数据非常可行,因为处理能力可以负担得起。过去,财富500强公司需要稀释他们的股份和发行更多普通股,为了能够购买多元处理器,这样就能够存储兆兆字节的数据。但是现在一个小学生,用他的零用钱就可以买到等价处理能力的处理器。
另外,确实没有和过去一样的需求,需要出去从像Oracle和IBM那样的公司中,购买大的硬件和令人印象深刻的工作站。而一个明智的IT部分可以从网上轻而易举的购买到上百个主板和多核处理器,并以历史上最低价从台湾直接装运过来。改道开源软件可以用来把各种各样的主板、处理器编成组,而国产的处理能力可以以千兆位字节吞噬掉非结构化的数据。
伴随着处理能力,免费软件也有能力强化了大数据运动。HBase之类的工具可以用把大数据存储在单一数据库表中,或海量数据库表中,海量数据库表可以扩展出数十亿的行和数以百万的列。从那里,如果你有兴趣挖掘你HBase数据,Hadoop可以帮助你处理那些海量数据集,并理解其不断积累的信息。
"如果想得到特殊的东西,你可以访问,你可以访问HBase领域的数据;但如果想获得关于分析的一些数据,比如说,你希望在数十亿的记录中,找到出某个星球的平均年龄,那么你可以使用Hadoop."Java之父,James
Gosling说。"它最终会非常快速并且非常高效。"
累积的大量数据池、处理能力的负担能力和专业化软件的可用性,这三大理由不仅使"大数据"成为互联网的一个敏锐话题,也成为了管理信息的一个可行方法。结合了廉价的处理能力,并且能够免费的下载,通过像Hadoop和HBase这样的开源软件解决方案,企业架构师们有更新,更有效的工具来处理在大数据了。随着越来越多的公司从一系列不同的出入中,收集了更多的信息,使得大数据处理能力达到前所未有的巅峰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27