
大数据时代:“数据”如何转化成“财富”
“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
———哈佛大学社会学教授加里·金
一分钟内,微博推特(Twitter)上新发的数据数超过10万;社交网络“脸谱”(Facebook)的浏览量超过600万……
这些庞大数字,意味着什么?
它意味着,一种全新的致富手段也许就摆在面前,它的价值堪比石油和黄金。
事实上,当你仍然在把微博客等社交平台当作抒情或者发议论的工具时,华尔街的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用其预判市场走势,而且取得了不俗收益。
现在就让我们一起来看看——他们是怎么做的。
这些数据,都能干啥
●华尔街根据民众情绪抛售股票;
●对冲基金依据购物网站的顾客评论,分析企业产品销售状况;
●银行根据求职网站的岗位数量,推断就业率;
●投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;
●美国疾病控制和预防中心依据网民搜索,分析全球范围内流感等病疫的传播状况;
●美国总统奥巴马的竞选团队依据选民的微博,实时分析选民对总统竞选人的喜好。
个案
你开心他就买你焦虑他就抛
华尔街“德温特资本市潮公司首席执行官保罗·霍廷每天的工作之一,就是利用电脑程序分析全球3.4亿微博账户的留言,进而判断民众情绪,再以“1”到“50”进行打分。根据打分结果,霍廷再决定如何处理手中数以百万美元计的股票。
霍廷的判断原则很简单:如果所有人似乎都高兴,那就买入;如果大家的焦虑情绪上升,那就抛售。
这一招收效显着——今年第一季度,霍廷的公司获得了7%的收益率。
“数据”如何转化成“财富”
国际商用机器公司(IBM)估测,这些“数据”值钱的地方主要在于时效。对于片刻便能定输赢的华尔街,这一时效至关重要。5年前,华尔街2%的企业搜集微博等平台的“非正式”数据;如今,接近半数企业采用了这种手段。
●“社会流动”创业公司在“大数据”行业生机勃勃,和微博推特是合作伙伴。它分析数据,告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发的正确内容,备受广告商热爱。
●通过乔希·詹姆斯的Omniture(着名的网页流量分析工具)公司,你可以知道有多少人访问你的网站,以及他们待了多长时间——这些数据对于任何企业来说都至关重要。詹姆斯去年把公司卖掉,进账18亿美元。
●微软专家吉拉德喜欢把这些“大数据”结果可视化:他把客户请到办公室,将包含这些公司的数据图谱展现出来——有些是普通的时间轴,有些像蒲公英,有些则是铺满整个画面的泡泡,泡泡中显示这些客户的粉丝正在谈论什么话题。
●“脸谱”数据分析师杰弗逊的工作就是搭建数据分析模型,弄清楚用户点击广告的动机和方式。
既能创造财富,就催生出新职业
周默(音译)是耶鲁大学的一名MBA毕业生,踏出校门便被IBM公司“抢走”,加入该公司正迅速扩展的数据咨询部门——这个部门专门负责对眼下社交网络上爆炸式的数据提供分析,对公司决策、削减开支、提升销售提供参考。
目前,美国需要更多像周默一样的数据分析人才。根据研究机构数据,美国需要14万至19万数据专家以及150万的数据分析师。
这些“数据财富”还能服务个人
财富并非只由大公司主宰。一名硅谷风险投资机构的专家说,“大数据”不仅仅是一个时髦词汇,“我相信它有真正的未来,这些数据将分散在各个领域,你的行车路线、你经常出现的地点、你喜欢的颜色、经常买的东西,社交网站上的观点和言论,这些都会成为个人数据的一部分,它们可以用来服务每个人”。
位于美国加州的帕洛阿尔托创业公司开发了一款产品:它看上去是一款普通的地理位置应用,而事实上,它能自动记录你经常出现的地理位置,并自动生成为数据图表——这些数据会帮助分析每日的行程路线、生活必去场所,甚至驾驶里程与汽油存量的关系,形成一款“个人生活助理工具”。
风险隐私的末日?
然而,新忧虑也随之而生。一些民间机构担心,企业和机构对这些数据无以复加的利用,可能违背了微博博主等发布数据者的初衷,从而构成隐私侵犯。法律框架的搭建远远赶不上新技术的发展,同时,各国对个人隐私的界定不一。另一潜在风险是,一些人可能利用微博等平台发布虚假数据,营造某一企业经营现状的假象,以期抬高或压低这家企业的股价。
科学扫盲
“大数据”有多大?
它是对科技发展趋势的一种“素描”,这种科技为人类打开了一扇门,可以更懂得这个世界并作出自己的决定。目前,全球的数据量正以每年50%的速度增长,而且,这种数据并不单纯是数量上的增加,而是全领域全方位的数据变化。当人们将这些数据通过电脑进行分析,就变成对某种发展趋势的判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28