京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据乃双刃剑 机遇和风险并存
对于大多数企业来说,大数据已经成为左右战局的决定性力量,安全风险也随之更加凸显。企业已经搜集并存储了所有的数据,接下来他们该干些什么?他们如何对这些数据进行保护?而且最为重要的是,他们如何安全合法地利用这些数据?
无论是从企业存储策略与环境来看,还是从数据与存储操作的角度来看,大数据带来的“管理风险”不仅日益突出,而且如果不能妥善解决,将肯定会造成“大数据就是大风险”的可怕后果。
从信息安全的角度来看,围绕大数据的问题主要集中在以下五个方面:
1.网络安全
随着线交易、在线对话、在线互动,在线数据越来越多,黑客们的犯罪动机也比以往任何时候都来得强烈。如今的黑客们组织性更强,更加专业,作案工具也是更加强大,作案手段更是层出不穷。相比于以往一次性数据泄露或者黑客攻击事件的小打小闹,现在数据一旦泄露,对整个企业可以说是一着不慎满盘皆输,不仅会导致声誉受损、造成巨大的经济损失,严重的还要承担法律责任。所以在大数据时代,网络的恢复能力以及防范策略可以说是至关重要。
2.云数据
目前来看,企业快速采用和实施诸如云服务等新技术还是存在不小的压力,因为它们可能带来无法预料的风险和造成意想不到的后果。而且,云端的大数据对于黑客们来说是个极具吸引力的获取信息的目标,所以这就对企业制定安全正确的云计算采购策略提出了更高的要求。
3.消费化
众所周知,数据的搜集、存储、访问、传输必不可少的需要借助移动设备,所以大数据时代的来临也带动了移动设备的猛增。随之而来的是BYOD(bring
your own
device)风潮的兴起,越来越多的员工带自己的移动设备进行办公。不可否认的是,BYOD确实为人们的工作带来了便利,而且也帮助企业节省很大一笔开支,但也给企业带来了更大的安全隐患。曾几何时,手持设备被当成黑客入侵内网的绝佳跳板,所以企业管理和确保员工个人设备的安全性也相应增加了难度。
4.互相联系的供应链
每个企业都是复杂的、全球化的、相互依存的供应链中的一部分,而供应链很可能就是最薄弱的环节。信息将供应链紧密地联系在一起,从简单的数据到商业机密再到知识产权,而信息的泄露可能导致名誉受损、经济损失、甚至是法律制裁。信息安全的重要性也就不言而喻了,它在协调企业之间承包和供应等业务关系扮演着举足轻重的角色。
5.隐私
随着产生、存储、分析的数据量越来越大,隐私问题在未来的几年也将愈加凸显。所以新的数据保护要求以及立法机构和监管部门的完善应当提上日程。
抛开以上提到的问题,数据聚合以及大数据分析就像是企业营销情报的宝库。基于用户过去的购买方式,情绪以及先前的个人偏好进行目标客户的定位,对市场营销者来说绝对是再合适不过了。但是那些出于商业利益考虑而迫切想要采用新技术的企业领导者会被建议先去了解法律和其他方面的限制,这些限制可能涉及多个司法机构;此外,他们应该实施一些隐私最佳实践,并将其设计成分析程序,增加透明度和实行问责制度,而且不应该忽视大数据对人们、对技术的影响。
很显然,保证数据输入以及大数据输出的安全性是个很艰巨的挑战,它不仅会影响到潜在的商业活动和机会,而且有着深远的法律内含。我们应该保持敏捷性并在问题出现前对监管规则作出适当的改变,而不是坐等问题的出现再亡羊补牢。
当然,一切都还处于初级阶段,而且目前也没有太多外在要求来强制企业保证信息的完整性。然而,企业每天处理的数据规模依然在保持增长,大数据分析使得商务决策越来越接近原生数据,信息的质量也变得愈加重要。如果同样复杂的分析可以运用到相关安全数据上面,那么大数据甚至可以用来改善信息安全。
虽然目前这些解决方案很难普及开来,但是他们正在和大数据分析一起用于防骗,网络安全检测,社会分析以及多通道实时监测等过个领域。
总的说来,大数据应该说是具有相当大的价值,但同时它又存在巨大的安全隐患,一旦落入非法分子手中,势必对企业和个人造成巨大的损失。套用一句话,世界是很公平的,收入与风险是成正比的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12