京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和人工智能正在改变商业世界八大方式
如果你像许多其他人一样,想知道大数据和人工智能对商业的好处到底是什么,那么你就是在正确的地方。
01.改进商业智能
由于商业智能,分析业务变得更容易,更有效。使商业智能成为可能的数据工具集是大数据。在引入大数据之前,商业智能有限。但是,现在,商业智能被认为是合法的职业。
事实上,许多公司和企业通过聘请商业情报专家来利用这一新的信息涌入。这是为了帮助他们的公司更上一层楼。
2.了解,定位和服务客户
在大数据应用方面,这是最知名的领域之一。主要关注点是使用大数据来了解客户,以及他们的偏好和行为。
通过实施大数据(以及雇用大数据专家),公司现在可以通过文本分析,浏览器日志和社交媒体数据扩展其传统数据集,从而更全面地了解其客户。
这里的主要目标是创建预测模型。
3.改变社交媒体的使用方式
AI影响商业世界的主要方式之一是通过社交媒体。在未来几个月和几年中,毫无疑问,实时定位的个性化内容将会增加。所有这些都是增加销售机会的最终目标。
这是可能的,因为AI可以使用有效的行为定位方法。AI的能力就是一个例子。由于启用了营销堆栈,AI可以有效且准确地确定任何平台上的某人何时开始搜索新的客户关系管理(CRM)软件。有了这些信息,企业可以自动响应,提供更好的购买体验。
4.客户响应产品的介绍
大数据不仅可以通过积极主动地改善客户服务,而且还允许公司制作客户响应产品。现在,产品设计专注于以前所未有的方式满足客户的需求。
而不是依靠客户告诉企业他们想要从产品中得到什么,数据分析可以用来预测产品的需求。
由于大数据,公司可以通过购买习惯,调查甚至客户的案例场景来收集信息,从而确定未来产品应该做什么和看起来像什么。
5.提高欺诈预防能力
那些已成为专业“欺诈者”的人已经在现代数字世界中提升了他们的游戏。虽然这是事实,但由AI提供支持的欺诈检测工具的功能可以帮助企业抵御这些复杂的欺诈计划。
这要归功于利用视频识别,自然语言处理,语音识别,机器学习引擎和自动化的企业。
6.效率的提高
工业工程师是可以使流程更高效的专业人员。他们明白,没有大数据,效率的提高几乎是不可能的。
如今,大数据提供了有关每个流程和产品的丰富信息。那些知道如何使用它的人理解丰富的数据正在讲述一个故事,而智能企业正在倾听。
工程师们还使用大数据来寻找使流程更有效运行的方法。对大数据的分析也适用于约束理论。对于大数据,现在更容易识别约束。一旦被识别,就可以快速确定约束是否具有约束力以及如何约束。
通过发现和删除约束,业务可以看到吞吐量和性能的大幅提升。大数据有助于找到所有这些答案。
7.启用持续客户支持
现在,聊天机器人很常见且能够提供全天候客户支持,企业可以利用其CRM系统中收集的数据。这使他们能够获得更有价值的客户见解。
当充分发挥其潜力时,数据可以帮助优化多个接触点,包括聊天机器人交互性,以及创建充满客户数据的反馈循环。
这意味着AI可帮助企业创造最终的客户体验。这一切都归功于收集,分析和使用的必不可少的客户数据。
8.降低成本
利用大数据,企业可以使用可用信息来降低成本。怎么样?通过发现趋势和预测行业内的未来事件。
了解何时可能发生某些事情有助于改进规划和预测。负责规划的人现在知道何时生产和生产多少。他们可以预测在给定时间需要多少库存,确保客户满意度而不会产生过多的成本。
毕竟,维护库存非常昂贵。企业不仅要承担运输成本,还要将资金用于不必要的库存。
通过大数据分析,可以预测销售何时发生以及何时需要生产。
更深入的分析甚至可以显示企业何时购买库存的理想时间以及需要保留多少库存。
大数据和人工智能:商业的未来
如果您想帮助您的企业实现更多目标,那么拥抱大数据和AI是必须的。
事实上,不久之后,那些未能接受这项新技术的企业将被抛在后面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12