
1.math简介
2.常用函数
另外该模块定义了两个常量:
random
1.简介
random是用于生成随机数,我们可以利用它随机生成数字或者选择字符串
2.常用函数
random.random()
用于生成一个随机浮点数:range[0.0,1.0)
用于生成一个指定范围内的随机浮点数,a,b为上下限
只要a!=b,就会生成介于两者之间的一个浮点数,若a=b,则生成的浮点数就是a
random.randint(a,b)
用于生成一个指定范围内的整数,a为下限,b为上限,生成的随机整数a<=n<=b;
若a=b,则n=a;若a>b,报错
random.randrange([start], stop, [,step])
从指定范围内,按指定基数递增的集合中获取一个随机数,基数缺省值为1
random.choice(sequence)
从序列中获取一个随机元素,参数sequence表示一个有序类型,并不是一种特定类型,泛指list,tuple,字符串等
random.shuffle(x[, random])
用于将一个列表中的元素打乱
random.sample(sequence, k)
从指定序列中随机获取k个元素作为一个片段返回,sample函数不会修改原有序列
decimal
1.简介
默认,浮点数学缺乏精确性
decimal 模块提供了一个 Decimal 数据类型用于浮点数计算。相比内置的二进制浮点数实现 float这个类型有助于
金融应用和其它需要精确十进制表达的场合,
控制精度,
控制舍入以适应法律或者规定要求,
确保十进制数位精度,或者用户希望计算结果与手算相符的场合。
Decimal 重现了手工的数学运算,这就确保了二进制浮点数无法精确保有的数据精度。 高精度使 Decimal 可以执行二进制浮点数无法进行的模运算和等值测试。
2.使用
>>> from decimal import getcontext
>>> getcontext().prec = 4 #设置全局精度
>>> Decimal('0.1') / Decimal('0.3')
Decimal('0.3333')
fractions
分数类型
构造
>>> Fraction('3/7') #字符串分数
Fraction(3, 7)
>>> Fraction('-.125') #字符串浮点数
Fraction(-1, 8)
>>> Fraction(2.25) #浮点数
Fraction(9, 4)
>>> from decimal import Decimal
>>> Fraction(Decimal('1.1')) #Decimal
Fraction(11, 10)
计算
>>> from fractions import Fraction
>>> a = Fraction(1,2)
>>> a
Fraction(1, 2)
>>> b = Fraction('1/3')
>>> b
Fraction(1, 3)
>>> a + b
Fraction(5, 6)
>>> a - b
Fraction(1, 6)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10