京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与AI下的人力资源管理重构
后工业社会”是美国著名学者和思想家丹尼尔·贝尔提出的,其典型特点是:以理论知识为中轴,核心是人与人之间知识的竞争,科技精英将成为社会的统治人物。
在互联网出现之前,后工业社会的进化相对平缓,知识进步对社会发展的驱动是平稳上升的。
然而,互联网的出现和高速发展,就像是为后工业社会注入了催化剂,人类社会在短短二十年中,就发生了可以媲美甚至超过以前百年进化的巨大变化。
后工业社会,被打下了深深的互联网属性。
知识创造未来的同时,未来也在改变知识本身。
颠覆再造:大数据管理掀起知识革命浪潮
从结绳记事到发明文字,人类社会的每一次进化都伴随着以数据信息为核心的知识革命。数据与信息的载体,从甲骨、木简、布帛到纸张,经历了数千年的历史。然而,从纸张到电子,几乎是一步跨越,就颠覆了几千年来数据信息记录、传播、交流与存储的传统方式。
大数据管理同时革新了数据信息的入口端和出口端。
在数据信息入口,大数据管理提供了真实的、实时的、低费的、海量的数据输入。
比如我们想要使用电子地图和导航设施,就必须定位所在位置和要去的目的地,并且在途中用GPS(全球定位系统)时刻记录位置,这就是数据信息的真实性和实时性。
入口端通过提供一些免费的大众服务来获取大众的各种数据信息,这就是低费性和海量性。
在数据信息出口,大数据管理提供了丰富的数据信息、精准的信息分析、便捷的信息匹配、高效的信息应用等实用功能。
比如淘宝、京东等电子商务网络平台,作为生活购物的综合信息平台,会对消费者的消费数据信息进行记录、追踪、分析,洞悉并掌握消费者的消费习惯,从而进行针对性营销推荐,甚至衍生一系列的后续商业服务。
风雨欲来:势不可挡的人力资源管理革命
(1)不断变化中人力资源管理
大数据管理下的知识革命重新定义了“知识”,作为知识创造者、吸收者、利用者的人力资源管理者,势必会被赋予新的内涵和使命,而这些正在悄无声息地改变着人力资源管理的主体内容。
数据信息革命正在给人力资源管理带来全方位的变化:
大数据将为人力资源规划提供更为科学、全面的信息与数据基础;
基于人才数据库的招聘工作将在招聘信息发布、简历收集筛选、人才测评、人岗匹配等方面大大提高工作效率和效果;
知识数据库将培训资源和培训需求实时链接和高效匹配,更有利于培训目标的达成;
薪酬数据库使得外部薪酬调研高度便利化,市场薪酬的透明性又反过来推动了企业薪酬进一步体系化和公平化;
绩效数据库使得绩效数据统计分析更加客观和便捷,使得绩效管理从烦琐的数据分析中解脱出来;
员工信息数据库使得劳动关系管理更加科学和规范,更有利于防控用工风险、推进人本管理,提升员工的企业黏性。
(2)AI推动人力资源素质革命
人工智能(Artificial Intelligence,AI)是模拟、延伸和扩展人类智能研究的技术科学,包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能的本质是“基于算法”的智能,在大数据的基础上,基于计算机科学的高度发展,人工智能已经取得了一个个丰硕的成果。
2016年,为吸人眼球的“阿法狗大战李世石”,结局却让人大跌眼镜:李世石以1:4落败于阿法狗。从“深蓝”战胜国际象棋大师加里·卡斯帕罗夫,人工智能很快攻下了“被认为是最复杂的智力竞赛”的围棋大赛。
中投顾问发布的《2018——2022年中国人工智能行业深度调研及投资前景预测报告》认为,随着AI技术研究的逐步成熟,人工智能在无人驾驶领域、医疗图像分析、智能投资顾问、精准营销应用、新零售应用等领域的应用进程将进一步加快。
AI的高速发展启动了人力资源素质革命的加速器。简单机械的工作将被人工智能很快取代:
在制造行业,有很多企业已经引入工业机器人,替代了很多流水线工人,并且大大提高了工作效率,降低了生产浪费;
在零售领域,无人超市已经上线,传统的理货员、服务员、收银员等,已经处在风口浪尖;
无人驾驶正在快速发展,驾驶员将何去何从?
大数据信息公开且动态匹配,使得传统的靠信息提供与匹配生存的中介机构,甚至包括提供高端猎头服务的人力资源机构,都面临了前所未有的转型挑战。
人力资源开发目的就是提升人力资源价值增值部分。当人力资源的价值定义被改写,人力资源素质革命的大幕拉开了……
未来已来:大数据与AI下的人力资源管理重构
(1)“终身学习+立体能力”重构人力资源素质
“不是我不明白,这世界变化快”,就像这首歌里唱的,科技的高速发展使得现在的世界堪称“日新月异”。
人力资源素质革命使得知识和能力的迭代周期正在快速缩短。在教育领域,以前可以用15~20年的教育周期培养一个可以工作30-40年的人力资源个体,大多数受教育者也可以凭借所学养活自己一辈子。
但是现在似乎不一样了。原有所学的价值,正在变得模糊,或者飘忽不定,而且几乎没有办法预期这些价值会在什么时候就会突然消失殆尽。
“终身学习”变成了人力资源素质革命中能够给予大家安全感的“唯一法宝”。只有时刻关注快速发生变化的时代,不断更新并获取匹配时代发展的人力资源素质,才能不被快速发展中的社会淘汰。
另外,人力资源能力正在从线性变得“立体”,“斜杆青年”的状态将会从“时尚”逐渐变成“大众”。“终身学习+立体能力”将成为鲜红的旗帜,引领大家走上人力资源素质重构的革命道路。
(2)“泛平台化+劳务关系”重构人力资源管理
时代的快速变化使得传统组织的固化障碍正在变得越来越突出。新时代的管理呼唤灵活多变的组织,于是,“平台化”组织成为时尚,“合弄制”正在成为新时代组织再造的研究方向之一。
现在很多企业正在向平台化组织转型,以“人力资源能力”为核心组织能力的行业,比如法律、审计、咨询等行业的企业组织,是平台化转型的先锋队。
同时,人力资源素质重构提供了更加具有成长性和立体化的人力资源个体。新时代的人力资源个体希望实现跨组织的合作与成长,全方位“解锁”自身的人力资源能力。
当组织更加柔性,人力资源更加立体,传统的“基于雇佣关系的劳动关系”将会成为历史,“基于平台组织的劳务关系”将成为未来人力资源合作的主流模式。“泛平台化+劳务关系”将全面革新人力资源管理的基础和结构,重构人力资源管理的内容和形式。
综上,大数据管理使得“互联网+”从标签变成了烙印,深刻融入并驱动了社会发展,正在快速改变时代的面貌;具有互联网基因的AI技术与大数据紧密结合,成为重构商业运作形式的“利剑”。
大数据与AI下的人力资源管理重构,A面是“终身学习+立体能力”重构人力资源素质,B面是“泛平台化+劳务关系”重构人力资源管理。
A面与B面相互促进又制约,在对立统一的“矛盾”中共同发展,正在改写人力资源管理的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27