
详解Python设计模式编程中观察者模式与策略模式的运用
这篇文章主要介绍了Python设计模式编程中观察者模式与策略模式的运用,观察者模式和策略模式都可以归类为结构型的设计模式,需要的朋友可以参考下
观察者模式
观察者模式:又叫发布订阅模式,定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,这个主题对象的状态发生变化时,会通知所有观察者对象,是他们能自动更新自己。
代码结构
class Topic(object):
"""主题类。保存所有观察者实例的引用,每个主题都可以有很多观察者
可以增加和删除观察者"""
def __init__(self):
self.obs = []
def Attach(self, ob):
self.obs.append(ob)
def Detach(self, ob):
self.obs.remove(ob)
def Notify(self):
for ob in self.obs:
ob.Update()
class Observer(object):
"""抽象观察者类,收到主题的变更通知时,更新自己"""
def Update(self):
raise NotImplementedError()
class ConcreteTopic(object):
"""一个具体主题"""
def __init__(self):
self.state = None
def ChangeState(self, newState):
self.state = newState
self.Notify()
class ConcreteObserver(object):
"""一个具体监听类"""
def __init__(self, topic):
self.topic = topic
def Update(self):
print self.topic.state
def client():
topic = ConcreteTopic()
topic.Attach(ConcreteObserver(topic))
topic.ChangeState('New State')
众多MQ中间件都是采用这种模式的思想来实现的。
观察者模式可以让主题和观察者之间解耦,互相之间尽可能少的依赖。不过抽象主题和抽象观察者之间还是有耦合的。
策略模式
策略模式: 定义了算法家族,分别封装起来,让他们之间可以互相替换。此模式让算法的变化不影响使用算法的客户。
代码框架
class Strategy(object):
"""抽象算法类"""
def AlgorithmInterface(self):
raise NotImplementedError()
class ConcreteStrategyA(Strategy):
def AlgorithmInterface(self):
print '算法A'
class ConcreteStrategyB(Strategy):
def AlgorithmInterface(self):
print '算法B'
class Context(object):
"""上下文,作用就是封装策略的实现细节,用户只需要知道有哪些策略可用"""
def __init__(self, strategy):
# 初始化时传入具体的策略实例
self.strategy = strategy
def ContextInterface(self):
# 负责调用具体的策略实例的接口
self.strategy.AlgorithmInterface()
def client(cond):
# 策略模式的使用演示
# 用户只需要根据不同的条件,将具体的算法实现类传递给Context,
# 然后调用Context暴露给用户的接口就行了。
if cond == 'A':
context = Context(ConcreteStrategyA())
elif cond == 'B':
context = Context(ConcreteStrategyB())
result = context.ContextInterface()
策略模式解决那类问题
在回答这个问题之前,先说下对策略模式的使用方式的感觉。上面的client函数,怎么看起来就像是简单工厂模式中的工厂函数呢?确实如此,实际上策略模式可以和简工厂模式结合起来,将更多细节封装在策略模式内部,让使用者更容易的使用。
那么策略模式和简单工厂模式有什么不同呢?策略模式中的算法是用来解决同一个问题的,根据时间、条件不同,算法的具体细节有差异,但最终解决的是同一个问题。在需求分析过程中,当听到需要在不同时间应用不同的业务规则,就可以考虑使用策略模式来处理这种变化的可能性。
缺点
使用者需要知道每一种策略的具体含义,并负责选择策略
改进
结合简单工厂模式,将策略选择封装在Context内部,解放client:
class Context(object):
def __init__(self, cond):
if cond == 'A':
self.strategy = Context(ConcreteStrategyA())
elif cond == 'B':
self.strategy = Context(ConcreteStrategyB())
def ContextInterface(self):
self.strategy.AlgorithmInterface()
def client(cond):
context = Context(cond)
result = context.ContextInterface()
改进后的遗留问题
每次需要增加新的策略时,就需要修改Context的构造函数,增加一个新的判断分支。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27