京公网安备 11010802034615号
经营许可证编号:京B2-20210330
健康医疗大数据的安全与应用
医疗健康大数据是覆盖自然人的全生命周期,既包括个人健康,又涉及医药服务、疾病防控、健康保障和食品安全、养生保健等多方面数据的汇聚和聚合。
简单讲就是涉及到健康的、医疗的跟个人相关的数据的合集,不仅在医院,在互联网,在企业、医院都存在。
同时会议上也提到要利用健康医疗大数据,创新业态,创新应用,促进医疗行业发展。
利用健康医疗大数据,不仅对改进健康医疗服务模式,而且对经济社会发展都有着重要的促进作用,是国家重要的基础性战略资源。
健康医疗数据从哪来?
我们可以大致分为五方面。
第一来自诊疗数据:
患者在医疗机构、体检机构等就医过程中产生并由信息系统记录的数据;
包括电子病历、检验检查、基因测序、用药、医学影像等;
第二来自研究数据:药品或器械研究机构,由研究机构录入或采集的个人健康数据,比如临床试验、生物样本库等;
第三是个人数据:个人在医疗机构外自行记录的健康数据,比如可穿戴设备采集的心率、脉搏、睡眠等数据;互联网行为记录的检索、问诊、查询、病患交流数据等;
第四是结算数据: 由商业保险公司、医保机构、物价管理机关存储的报销和流通数据;最后是公共医学:由临床指南、医疗健康期刊、医学文献,循证医学数据资源库等组成。这就是医疗大数据的来源。
健康医疗数据核心在医疗机构
因为医院的数据是真实的疾病数据,其他的社会药品采买数据等等跟真正核心医疗健康的核心还有些距离。
而在医院包括护理记录、电子病历、用药信息、疾病诊断等等,这些数据综合一个特点就是敏感度非常高。
第二就是真实,为什么真实?看病有医嘱、处方、病案等,这些医疗文书是可以作为法律证据的。
同时质量比较高,在医疗信息化20年时间的不断积累和持续改进,数据的完整度和质量也在不断地提高。
行业要求
医疗健康大数据据作为新生事物,在行业标准和行业规范上尚有欠缺。直至近一年,国家卫计委陆续出台的全国医院信息化"功能指引"和"建设标准和规范",其中提到大数据平台,就是希望医院须要建设大数据平台,执行国家十三五规划中大数据战略落地的内容和时间计划,要求三甲医院最终要建设面向大数据和人工智能技术的服务架构,高效高质组织数据资源,形成数据生产力。
行业现状
健康大医疗数据共享及应用不易。
针对于医院来说:客观存在"不敢、不愿、不会"三种形态。
不敢,因为数据共享、数据安全这些问题没有解决,所以不敢去做。
没有规定,或者不太明确,不敢做。不愿,因为医院权益、政府权益、社会权益,不清楚。还有医院内部科室的数据担心被拿走,不愿意。
不会,因为大数据必须要有大数据的技术支撑,没有技术支撑就没法儿对数据进行挖掘和利用,同样在数据共享开放过程中,技术、标准、机制、体制突破仍存在较大的障碍,造成各部门在推动过程当中不会做,这些现状造成了「不会」现象。
这些都是现状,但核心是数据安全和无法做到安全可控,让医院放心。
安全和隐私保护
数据安全挑战
数据安全没有解决,能不能用?怎么建立安全体系?
首先医院安全受到不断的挑战。
我在昨天看到一个新闻,我不知道大家看到没看到,就是新加坡的某医院集团,其医院数据被黑,包括他们总理在内的就诊数据都在里面,非常敏感。
黑客拿走了。
为什么大家盯到了医院?说明黑客对医疗数据还是感兴趣的。
比如勒索数据,过去病毒很少到医院,但去年勒索病毒刚爆发时就是针对医院,英国到中国都有中招,但是中国医院被曝光的很少。所以说安全形势比较严峻。
医院安全管理
第一是物理安全
医院的网络物理网是分内部网:挂号、结算、收费。一个是外网办公网,再往外才是英特网。
整个物理是隔离的,而且网络也是隔离的。
第二数据安全,主要是指医疗内部数据,数据保护采用了加密、数据库审计、防篡改等技术。
第三是网络安全,从网络角度讲,国家卫计委提出2015年全部三甲医院要建立信息安全三级等级保护,逐步实现了基本的安全。
第四隐私安全,这是新的命题,因为我们数据在内部用的话是不去隐私的明文。
那些是隐私数据?
国内还没明确法律规定细则。
我们可借鉴美国HIPPA法案,其明确规定了个人姓名、社保号、车牌号等18项隐私数据,或者说只要能指向患者个体的都算隐私。
那么数据如何去隐私?
现在通用的还是基本加密技术。
医院内部不需要加密,所谓外部就是科研研究、药物研究时需要大量统计分析时需要加密,我们现在用的是MD5加密等机密技术,有可逆的和不可逆的。
健康大数据应用
在安全前提下要放开应用。
借用国家卫计委规划信息司领导所言"一分部署、九分落地"。健康医疗大数据也需要一分建设,九分要应用。从产业应用现状看,公司多,投资多,期望大,产出还未确定。
从应用方向上,我们可以分为:临床决策支持(AI),医保控费和险种开发,医院管理,医疗器械和新药研发,慢病和健康管理等多个方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12