
浅析商务智能系统的组成
在当前的全球化竞争日益激烈的经济环境下,企业的生存发展,关键在于它是否能够对各种不同的用户需求做出快速的反应及正确的决策并提供优质的产品和服务。商业智能(Business
Intelligence,
BI)系统是指运用数据仓库,联机分析和数据挖掘技术来处理和分析商业数据,针对不同的领域提供不同的应用解决方案,协助用户解决商务活动中的复杂问题,从而帮助决策者面对商务环境的快速变化而做出敏捷反应和合理商业决策的管理系统。
商业智能的实质是从数据中有效地提取信息,从信息中及时地发现,为人类的思维决策和企业战略发展服务。传统的信息系统是处理离散事务的。这些系统不是设计为让用户去从不同聚集层去抽取数据,并使用高级的方法来分析企业数据的,而是适应用于服务于单一目的的商务过程或程序,如会计过程等,所以系统使用者很难通过传统离散的事务处理系统对商务环境进行整体了解。
由于商务智能系统不是针对处理离散事务的系统,所以它的组成与其他的信息系统与一定的区别。IBM商业智能专家Michael L. Gonzales在《IBM数据仓库及IBM商业智能工具》中给出商业智能组成为数据仓库、数据源、数据目标。
数据仓库的典型工作是对集成、清洗、聚集、预计算和查询服务所需的大量数据进行批处理。数据源可以是操作型数据库、历史数据、外部数据或是己有数据仓库中的数据信息,也可以是相关数据库或是其他任何支持商务应用的数据结构。数据源可以存在于多种不同的平台,并且包括结构化信息,如电子表格,无结构信息,普通文本,图片等等。
一般来说,数据预处理、建立数据仓库、数据分析、指标展示是商业智能的数据流程。数据预处理是整合企业原始数据的第一步,包括数据抽取、转换和装载三个过程。源数据采集、筛选、整理及转换基本上是从前台作业系统、业务部门及企业外部的各种类型的数据库(如:ORACLE,
SYBASE, SQLSERVER, FOXPRO,
ACCESS,工NFORMIX等)中获取数据的,这些数据必须依用户所需,按照数据仓库的要求,以统一定义的格式从各个系统抽取出来,经过数据筛选、整合、转换纳入数据仓库。
建立数据仓库
建立数据仓库是处理海量数据的基础。商业智能系统的核心构架是数据仓库,其主要功能既包括传统的联机事务处理(OLAP)及统计查询,又包括决策支持和联机分析处理(OLAP),数据仓库包括数据提取模块、数据清洗模块、数据转换模块,实现数据的提取、净化、过滤及数据标准化。[page] 数据分析
数据分析是体现系统智能的关键,一般采用联机分析处理和数据挖掘技术。联机分析处理不仅进行数据汇总、聚集,同时还提供切片、切块、下钻、上卷和旋转等数据分析功能,用户可以方便地对海量数据进行多维分析。数据挖掘的目标则是挖掘数据背后隐藏的知识,通过关联分析、聚类和分类等方法建立分析模型,预测企业未来发展趋势和面临的问题。
指标展现
通过数据分析,系统得出结论,并提交给决策者。指标展现的主要方式有以下几种方式:
1. 查询。定义查询、动态查询、OLAP查询与决策支持智能查询;
2. 报表。产生关系数据表格、复杂表格、OLAP表格、报告以及各种综合报表;
3. 可视化。用易于理解的点线图、直方图、饼图、网状图、交互式可视化、动态模拟、计算机动画技术表现复杂数据及其相互关系;
4. 统计。进行平均值、最大值、最小值、期望、方差、汇总、排序等各种统计分析;
5. 挖掘。利用数据挖掘等方法,从数据中得到关于数据关系和模式的知识。
可见,商业智能涉及一个很宽的领域,集收集、合并、分析、提供信息存取功能于一体,包括抽取、转换、装载软件工具、数据仓库、数据查询和报告、联机数据分析、数据挖掘和可视化等工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10