京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在训练的时候你的模型是否会出现训练时速度很慢?或者预测结果与训练结果相差过大的现象?那我们可能就需要处理一下过拟合的问题了。
首先看一下overfitting维基百科上的一些信息:
Overfitting occurs when a model is excessively complex, such as having
too many parameters relative to the number of observations. A model that
has been overfit has poor predictive performance, as it overreacts to
minor fluctuations in the training data.
In particular, a model is typically trained by maximizing its performance on some set of training data. However, its efficacy is determined not by its performance on the training data but by its ability to perform well on unseen data
The potential for overfitting depends not only on the number of
parameters and data but also the conformability of the model structure
with the data shape, and the magnitude of model error compared to the
expected level of noise or error in the data.
从以上两段可以稍微总结一下,当你的模型过于复杂时,比如说输入参数过多,你的模型就会出现过拟合问题,该模型虽然会在训练集上表现出较好的预测结果,然而!在预测的时候呢?预测结果就会表现的很差。根据维基的定义以及我平时的一些实验总结,当你observation
的noise 过多,输入维度过大,都可能会导致overfitting。
解决办法就是我们可以启用交叉验证(cross-validation),正则化(regularization),Early Stopping,剪枝(pruning),Bayesian priors这几种方法。
先说cross-validation:
cross-validation 的原理就是现在它的一个子集上做训练,这个子集就是训练集,再用验证集测试所训练出的模型,来评价模型的性能和指标,最后再用测试集来预测。
Early Stopping就是在每次训练的epoch结束时,将计算出的accuracy 跟上一次的进行比较,如果accuracy 不再变化,那么停止训练。
下面主要说下regularization在NN中的作用:
模型假设三层,输入,隐藏,输出。输入层为2个神经元,输出为2个,batchsize为10,下图为当隐藏层神经元个数分别设置为3,6,20时,模型的情况:

注意看当隐藏神经元为20时,模型的状况,每个红色的点都被完美的归类,没错,这在训练时结果是很好,但是在测试集的表现呢?这就不一定了,谁能保证自己的训练结每点噪声呢?是不是?所以用这个模型去预测未知的,就可能造成预测结果很差,这就是NN的overfitting问题。
所以一般大部分情况,我们在调试模型时很多时候是在跟overfitting做斗争。关于regularization方法。
简单来说就是在目标函数上加一个λ
使之变成Error+λf(θ),λ用来惩罚那些权重很大的向量,称之为正则系数吧!λ=0
就意味着没有采用regularization来预防overfitting。
regularization 有 L1 regularization和L2 regularization。如果你想知道哪一个特征对最后的结果产生了比较大的影响,可以采用L1 regularization,如果你不那么在意对特征的分析,那就用L2 regularization吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12