
大数据在汽车后市场有哪些价值
近日,国务院正式印发《促进大数据发展行动纲要》(以下简称《行动纲要》)。《行动纲要》指出,将推动大数据与云计算、物联网、移动互联网等新一代信息技术融合发展,探索大数据与传统产业协同发展的新业态、新模式,促进传统产业转型升级和新兴产业发展,培育新的经济增长点。那么,对于传统的汽车后市场,大数据将会产生哪些价值呢?
维修数据公开将让汽车后
市场形成整体
在政府提出的众多针对汽车后市场的政策中,汽车维修数据的开放成为该行业突破性发展的标志。维修数据公开以后,所融合形成的更多维度的大数据能够让整个汽车后市场形成一个整体,从而打破行业垄断所造成信息不对称壁垒。在大数据基础上,整条产业链上的维修、保养等各环节商家都能更专注于自己所在的行业,所需要的相关数据只要与专门做数据的商家对接即可,这样整个行业就都做轻了,汽车后市场的竞合时代也就由此开始。
从产业链来看,当前中国汽车后市场基本可分七个大类:养护、维修、改装、二手车、汽车配件、相关电商及金融保险。这七个大类其实可以再做细分,譬如养护就包括洗车、美容、机油及零件更换等服务。七大类汽车服务可以分为汽车服务、车联网相关及工具社区三种类型。当前而言,汽车服务类的众多商家正在由重向轻变化,开始由产业链低层向中间层过渡,做“服务汽车服务商”的服务商。这一类商家无论是做平台的还是做垂直服务的,在信息化方面都在向“大数据”过渡。
因为商家发现汽车后市场服务中的竞争不在于维修人员的多少,更需要的是对原厂配件、品牌配件、工时、维修信息等数据的适配,举个例子,比如机油滤清器(简称机滤)需要与上门的客户车型匹配,可原厂机滤很贵,一般的O2O公司都使用曼牌的,那曼牌的哪款机滤适合这个客户的车型呢?这就需要用数据库来做匹配支持。在数据获取上,有数据积累的商家可以通过更多的渠道获得信息,没有积累的则会与专业的数据库企业进行合作。整个产业链对大数据服务都有重度需求。
大数据能带给行业更多的在于商家对于客户以及业务的管理,这些数据具体到汽车后市场,则是对汽车后市场服务商家在沟通客户以及商业营销的综合性管理。尤其是车型、配件、品牌、保养等数据的灵活调取与应用方面,可以让商家近距离接触车主。甚至不用询问就能了解车主用车信息,可以进一步为车主提供一站式汽车服务方案。
那么,汽车后市场需要哪些数据呢?一个合格的数据服务提供商,应该做到以下几点:
——全品牌全车型全配件的数据信息。要有基于VIN的全车型全配件的通配架构,配件数据库包括:VIN码识别库、车型配置库、保养规则库、配件原厂件号品牌件号通配数据库等。
——与国外同步的数据库关联结构。即时同步国外零部件供应商的信息,能够保证最新车型的零部件填充数据库。
——互联网化的API数据服务。保证每一个与其合作的商家,都能通过API接口对接并调取所需的数据库信息。
——至少5年以上的数据库制作经验。整个汽车后市场对数据的需求越来越大,同时也正在产生更大量的数据,数据处理经验以及数据库制作经验尤为重要。
大数据将在车后服务方面
解决很多问题
老生常谈的数据维护,从全品牌到全车款,海量的数据挖掘与匹配,没有一个足够强大的运营团队是不行的。
大数据时代,车辆上传的每一组数据都带有位置信息和时间,并且容易形成海量数据。在大数据平台上,基于对车辆数据、道路数据、环境感知数据等海量信息的处理、分析、汇总,汽车服务商或整车厂商可获得相关车主的车况、驾驶行为、里程等行车、用车过程中的数据,从而可基于大数据挖掘对车主进行精细化的管理。
以上所讲的是广义上大数据对汽车后市场行业的影响,体现在车后服务方面,大数据确实能够解决很多问题。具体而言,大数据模式对于该行业的一些价值可以表现为以下几点:
——提升产业链配件交易的效率。目前,B2B配件交易通过电话询问的发单准确度不足50%,前文所述几大数据库是保证交易信息准确性的基础,网络交易可以为商家及车主提供更详尽的配件信息,重复换货频次降低。
——多种选择为商家带来价格优势。数据库不只是为商家提供原厂配件信息,同时也提供其他品牌的可替换配件,车主可以根据情况选择合适的配件,同时这也是品牌商家的一个销售渠道。
——改变了传统的咨询方式。将传统汽配行业1对1电话询件询价方式,提升为1对多的数字化询价方式,极大地提高了商家与车主、商家与配件商的沟通效率。
同时,提供了交易配件的追溯源头可行性。数据库对配件厂商、配件分销商、配件连锁分销商、汽车保养商、配件B2B电商平台及O2O服务平台都有清楚的记录,并能够逆向查询,这样配件以及服务出现问题之后,便可以逆向找到交易源头,解决了汽车后市场服务的透明化与公正性的问题,无须再用第三方监督。
在行业影响方面,除了以上几点,在“互联网+传统”行业方面,大数据融入传统企业的CRM系统并倒逼传统企业升级转型,是“互联网+”落到实处的一个重要途径。总而言之,大数据将会为整个汽车后市场行业的进步提供更有利的基础。同时,无人驾驶、车联网、智慧交通及工业4.0等也将受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03