
BI项目需要做哪些准备工作
BI系统可以说是企业信息化管理中末端产品。为此在上BI项目之前,企业需要先梳理一下企业的现状,做好相关的准备工作。只有如此才能够提高系统的成功率和效果。那么具体需要做哪些准备工作呢?且听笔者一一道来。
一、电子文档数据的整理
BI项目的主要功能就是数据的分析与挖掘。巧妇难为无米之炊。如果没有充足的数据,那么即使再好的BI系统也无用武之地。为此企业在做BI系统之前,比较关键的一个步骤就是电子文档数据的整理,特别是如果企业有多种格式的电子文档数据,如有Excel表格、又有数据库系统的,此时需要进行一一梳理。如果以前还有书面的数据,如一些检验单据等等,那么最好也需要先转化为电子文档的数据。
在这里不少企业会有一个误区。认为这些数据等到BI项目开始时再整理也来得及。其实这是不对的。因为对于BI项目来说,时间就是金钱。现在不少BI实施顾问都是按时间来进行收费的。如果让实施顾问来帮助企业整理这些基础数据,那么企业BI项目的实施成本会像夏季的温度一样,很快的往上涨。为此这些基本型的基础数据的整理,最好还是在BI项目开始之前就做好。
BI项目开始时,实施顾问只需要检验这些数据的合理性。然后对不合理的地方进行调整即可。也就是说,这个基础数据的整理,不能够占据过多的项目时间。当然这并不是否认基础数据的重要性。这些基础数据对于BI系统来说,就好像是血液。没有他们,BI系统将无用武之地。但是这里需要强调的是,基础数据的整理相对来说是比较简单的,企业一般可以自主的完成。如果让实施顾问将时间花在这个上面,有点不值。
二、分析结果的梳理
在上BI系统之前,企业还应该对需要得到的分析结果进行确认。简单的说,就是让BI系统能够产生哪些分析结果。如存货周转率分析、交货及时率分析、不良品率分析等等。在系统上线之前,将这些需要的分析结果梳理出来,有很多好处。
1、便于整理电子文档的数据
这些结果都不是凭空而来的,而是需要基础数据的支持。如需要分析存货周转率,那么可能还需要上一年的数据。因为前后两年指标的对比,才可以发现背后的问题。总之只要涉及到前后数据的对比,那么企业准备的就不只是本年的数据,对于上一年的基础数据也需要进行整理。如果前后两年的数据格式不一致,还需要进行调整等等。笔者再次强调一次,巧妇难为无米之炊。在上BI项目之前,需要先确认目标。然后根据目标来整理所需要的基础数据。这同时也可以缩小基础数据的整理范围。
2、便于后续软件选型
什么样的软件适合企业的情况呢?或者说哪个系统能够基本上实现企业的现有需求,而不需要进行过多的二次开发呢?要回答这个问题,企业必须先对自己的需要有一个清晰的认识。简单的说,就是对自己需要得到的结果有一个明确的判断。然后在后续系统选型时,就可以将这些问题抛给BI系统的售前咨询顾问,看看他们能否结果。从减少项目成本与降低项目风险的角度讲,在后续项目实施时应该尽可能的减少系统的二次开发的数量。而要达到这个目标的话,最好就是要在选型时尽量选择哪些具有现成分析模型的系统。[page]
3、便于对项目组与供应商进行考核
是否软件顺利上线,便是项目的成功呢?笔者认为不能够这么片面的认识。BI系统的成功,需要看预计的结果有没有实现。因为很多企业虽然BI系统已经上线了,但是很多预期想要得到的结果仍然很难从BI系统中准确的得到。在这种情况下,能够说这个BI项目成功了吗?恐怕不能。那么在后续的项目中,企业管理者如何对项目小组以及供应商实施团队进行考核呢?这就需要企业有预期的目标。后续考核时,只要将这些目标进行一一核对即可。
那么企业该如何来收集自己需要的结果呢?笔者认为,可以从如下几个角度出发。
1、根据企业现在的工作
如不少企业都有周例会、月度年度总结会议等等。在这些会议上,各个部门都需要得出一些报表。如到货及时率分析报表、成本控制报表等等。这些就是现成的需求。以前是手工在操作,现在需要BI系统能够自己完成。如果是年度报表的话,可能还有最近几年销售的变化情况分析报表等等。这些日常工作中需要用到的分析报表,就是我们在BI系统实施之前需要确认的目标。不过这些是最基本的目标。因为依靠手工可以完成的工作,在BI系统中可以说是小菜一碟,是最基本功能。这些需求的确认难度也并不是很大。
2、需要收集企业想实现、但是依靠手工需求却很难实现的内容
如有些企业,可能认为原材料市场波动比较大,对成本的影响也很大。以前由于工作量的限制,采用的都是先进先出或者月加权的成本计算原则,而没有采用移动加权平均。从计算量来说,前面两个成本的计算原则要比后一个计算量少的多。但是从精确度的角度讲,移动加权平均精确度更高,特别是在原材料市场价格波动比较大的情况下。在手工计算下,很少有企业采用移动加权成本计算原则。
现在企业有了BI系统,企业可能希望在成本分析采用的是移动加权平均的机制。企业要收集这些需求可能有一定的难度。因为这些需求以前没有实现过,可能还存在于理论上。不过实现这些需求才能够体现BI系统的价值。故企业对于这些需求,也需要细心整理。不过在整理时,需要兼顾实现的可能性。不要过度的理论化,而在现实中根本无法实现。否则的话,就太虚了。
三、显示格式的确认
同样一句话,在不同的人口中说出来可能会有不同的结果。同样,BI系统中相同的分析数据,如果以不同的格式显示出来,也会有不同的效果。为此在BI系统开始之前,还需要确认预计需要显示的格式。注意,并不是所有的BI系统都可能够以丰富多彩的格式来显示相关的内容。
根据笔者的了解,很多企业倾向于Excle表格中的那些图表。如饼图、条形图等等。
所以在BI系统中,这些是最基本的结果显示方式。企业管理者需要整理出哪些分析结果需要以那种方式来进行显示。这主要根据自己的习惯来确定。而不能够让对方的顾问牵着鼻子走。当然,如果经过比较,对方顾问提出的方式可能更加的合理,此时企业也需要转变自己的观念。笔者这里强调的是,在项目实施过程中,企业应该掌握着主动权。
另外需要特别强调两个方面的内容。一是仪表盘。如企业可能有销售业绩的考核。有一个目标值,有一个实际值,然后通过仪表盘来直观的显示出来。这个显示方式企业以前可能没有用到过。不过在实际工作中确实很好用。不过并不是所有的BI系统都可以实现的。在选型时需要注意这方面的内容。二是图表的钻取功能。即从年度报表中可以钻取到各个月份的数据、然后从各个月份的数据中也可以钻取到每周的数据等等。钻取功能可以方便用户查询更加具体的数据,直到最基本的原始数据。从而方便用户的使用。
从以上的分析中可以看出,BI系统在实施之前有比较多的准备工作要做。笔者的建议是,在做这些准备工作时千万不能够偷懒。准备工作没做好,供应商高兴,企业头疼。准备工作做的好,供应商头疼,企业高兴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10