
大数据时代:数据服务业
自从苹果公司先后推出iPhone和iPad红遍全球,全世界进入了若干产业被颠覆,若干产业被重组,若干公司被干掉的大乱局面。以近来谷歌和微软相继推出平板电脑为标志,再加上它们在手机操作系统以及手机制造上的努力,可以说传统的产业划分和商业模式分析需要重新来过了。
从产业分析的角度看,今天再把网络业,IT业,电信业和软件业分开看已经什么都说不清楚了。传统的TMT概念(电信,媒体和信息技术业的统称)更是应该被扔进历史垃圾堆。一个重新定义过的大网络业概念可能会更加贴切地反映高度变动中的世界和日益模糊的产业关系。这个大网络业的上游,领军和驱动力是传统意义上的网络业(或称小网络业),中游是IT业,电信业和软件业,下游是新闻出版业,影视业,娱乐业,零售业和物流业。之所以可以把它们统统划归一个大产业概念,是因为它们都已经或正在互联网化,彼此之间形成了共生共荣的紧密关系。
从正在到来的大数据时代的角度看,也许大可不必纠缠于大网络业和小网络业如何区分的官司之中,干脆重新定义一个新概念:数据服务业。这个产业的核心资产就是电子化网络化的数据,无论这些数据来自于什么地方,什么组织或个人,什么产品或服务。五彩缤纷的大千世界里万事万物都可以转化为由0-1码子组成的或简单或复杂的数据字节。整个产业链由数据生产,数据传播,数据获取,数据存储加工和数据交换与出售等环节组成。各个传统产业可以分门别类地属于一个或数个产业链的环节。例如,新闻出版业和影视业主要从事数据生产,电信业和网站主要做数据传播,数据终端制造商帮助用户获取数据,软件商专攻数据存储加工,大家一起卷入数据交换和直接间接的出售业务。公司大小的区别主要在占有和利用数据量的大小,甚至像电子商务这样表面上很实在的业务其实也不过是通过出售附着在某种具体商品上的数据而谋利。
数据服务业和现有的相关产业的根本区别在于其商业模式是数据驱动型,是对大数据的深度分析加工,是对大数据的多重利用和深度利用,是对现有简单直接商业模式的增值服务。一个理想的全产业链数据服务业公司应该由全系列数据终端的设计与销售,通用型开放平台的开发与运营,云计算后台的开发与支持,数据存储与使用后台以及数据分析与数据产品平台等部分组成。这样一个公司中CIO或CDO(首席数据官)扮演重要的领导角色,雇佣大批数据科学家,数据工程师和数据产品经理。实际工作中数据以TB为最小使用单位,业务讨论中最常使用的名词是“最小数据集”(Minimum
Data Set 或MDS),“元数据”(Metadata),“数据集市”(Data
Mart),和“设施即服务”(Infrastructure as a Service
或IaaS)。同现有网络业商业模式相比,这个公司的商业模式具有鲜明的精准性,智能化,个性化和多样化的特色,具有高出若干倍的投入产出比和性价比。
如果从这个逻辑去看苹果的iPhone和iPad,就不会仅仅叹服其精美的设计,强大的功能和惊人的市场征服力,而会思考苹果怎样从一个IT公司转型为走向未来数据服务业的领军者。同样,谷歌推出开放式手机操作系统和平板电脑,甚至过去很难为人所理解的企业行为,包括发射地球卫星,研制自动驾驶汽车,投资绿色能源和各种传感器的研发,都可以理解为这些不计成本的行为是全方位增加生产和获取大数据的种种努力,是在不懈地为走向数据服务业争取先发优势,是在为未来的领先地位下一盘很大的棋。同样,对微软的平板电脑和手机操作系统,亚马逊的电子书和FACEBOOK推广自家的数据中心设计,都应该归结为大数据时代来临前的热身运动。
至于一些国内的网络业公司,如果不去努力学习和思考即将到来的大数据时代,不去未雨绸缪地争取孕育中的数据服务业的战略机会,而只是机会主义地邯郸学步,东施效颦,也去做什么手机,那只能是捡了芝麻,丢了西瓜。如果自身没有成龙配套的操作系统,开放平台,云计算后台和数据分析加工平台,单兵突进只做手机,也许在某个时段能赚点钱,但长远看是没有前途的。那些在手机首页集成点自己的服务,高呼抢占网络入口口号的伎俩,在滚滚而来的大数据洪流面前显得那么苍白无力。何不舍弃鸡肋,重新定位,发挥优势,争取不要在大数据时代掉队呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22