
大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场,一般有精准营销和大数据风控两个方面。业内人士建议,通过大数据挖掘金融价值,使数据资产成为金融机构的核心竞争力。
再复杂的其本质也简单,金融大数据的运用与发展就是其一。
近来网贷平台频暴雷,根本原因除了外部监管趋严、市场利空、经营不善以外,不外乎资金错配、假标盛行、借款人恶意欠债等,这些原因用简单的办法就可以得到解决:其中大多可以通过大数据征信来解决信息不对称。而大数据征信是利用数据分析和模型进行风险评估,依据评估分数,预测还款人的还款能力、还款意愿以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。大数据在金融领域的应用远不止如此,银行、保险、基金、证券等领域均有广泛的市场。
大数据在金融领域应用:精准营销和大数据风控
据苏宁金融研究院高级研究员薛洪言介绍,大数据在金融领域的应用,一般有精准营销和大数据风控两个方面。
薛洪言表示,精准营销是基于行为数据去预测用户的偏好和兴趣,继而推荐合适的金融产品。对于大数据风控,其逻辑便在于“未来是过去的重复”,即用已经发生的行为模式和逻辑来预测未来。这意味着,随着随机事件的大量发生,是可以发现其内在规律的。而大数据里包含的海量数据,为我们发觉隐藏在随机事件后面的规律提供了条件。而大数据风控的两个应用,信用风险和欺诈风险,背后都是这个逻辑,通过分析历史事件,找到内在规律,建成模型,然后用新的数据去验证和进化这个模型。
贵阳大数据交易所执行总裁王叁寿告诉中国经济时报记者,截至2017年底,中国网民规模达到7.72亿,手机网民规模达到7.53亿。随着我国加快IPv6、5G的商用部署,数据总量将呈现爆发式增长。从某种角度而言,数据详实记录了发展中的世界,而大数据使未来复现成为可能。大数据是无限循环、无限复制的绿色资源,应用次数越多,其价值越大,将会颠覆未来很多产业的竞争模式。对于当前而言,大数据是国家基础性战略资源、创新生产要素、是21世纪的“钻石矿”;对于未来而言,大数据是“活化石”。
大数据应用水平正成金融企业竞争力的核心要素
至于金融大数据的未来,有分析称,数据驱动金融将是一种趋势,谁掌握了大数据,金融营销、金融风控就会胜出。
中国支付清算协会业务协调部丁华明认为,一个关键的因素是大数据应用水平正在成为金融企业竞争力的核心要素。金融的核心是风控,风控以数据为导向。金融机构的风控水平直接影响坏账率、营收和利润。目前,金融机构正在加大在数据治理项目中的投入,结合大数据平台建设项目,构建企业内统一的数据池,实现数据的“穿透式”管理。在大数据时代,数据治理是金融机构需要深入思考的命题,有效的数据资产管控,可以使数据资产成为金融机构的核心竞争力。
普华永道的研究报告显示,83%的中国金融机构希望投资大数据。金融行业对大数据的需求属于业务驱动型。其迫切希望应用大数据技术使营销更精准、风险识别更准确、经营决策更具针对性、产品更具吸引力,从而降低企业成本,提高企业利润。随着更多金融机构基于大数据获得丰厚的回报,将进一步打消其顾虑,加速大数据的普及。
上述报告还称,各级政府正推动金融行业数据整合、共享和开放。国务院《促进大数据发展行动纲要》提出,到2018年,中央政府层面实现金税、金关、金财、金审、金盾、金宏、金保、金土、金农、金水、金质等信息系统通过统一平台进行数据共享和交换。国家还通过推动建设各类大数据服务交易平台,为数据使用者提供更丰富的数据来源。数据越关联越有价值、越开放越有价值。大数据的发展需要所有组织和个人的共同协作,将个人私有、企业自有、政府自有的数据进行整合,把私有大数据变为公共大数据。金融数据安全问题也越来越受到重视。大数据的应用为数据安全带来新的风险。数据具有高价值、无限复制、可流动等特性,这些特性为数据安全管理带来了新的挑战。
对金融机构来说,网络恶意攻击成倍增长,组织数据被窃的事件层出不穷。这对金融机构的数据安全管理能力提出了更高的要求。大数据使得金融机构内海量的高价值数据得到集中,并使数据实现高速存取。但是,如果出现信息泄露,可能一次性泄露组织内近乎全部的数据资产。数据泄露后还可能急速扩散,甚至出现更加严重的数据篡改和智能欺诈的情况。
2018年是金融行业监管大年,“防风险”依然是行业发展主旋律。“近年来大数据风控越来越受重视,越被市场认可,我们越要做好风险防控工作,合规发展。”百融金服副总裁陈雷指出,不仅金融业务要合规经营,大数据风控行业也要合规发展。
以当下正经历暴雷潮的网贷行业为例,陈雷认为,以P2P为代表的互联网金融原来只要“有胆量”就能发展起来的时代已经过去了,现在是需要拥抱科技的时代,要通过大数据挖掘金融价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22