
大数据纲要吹响券商全方位创新集结号
互联网公司拥有大量的消费者数据、金融数据、物流数据,可据此开发新产品和新商业模式。券商应抓紧有效整合多方数据,分析挖掘其中的业务价值,提升未来的竞争力,真正做到“大数据、小数据、智能数据、群数生辉;广挖掘、深挖掘、互联挖掘、多挖出金”。
国务院近期印发《促进大数据发展行动纲要》,正式拉开了国家层面运用大数据加强服务和监管的序幕。纲要提出到2020年我国将形成一批具有国际竞争力的大数据处理、分析、可视化软件和硬件支撑平台等产品。这也为券商的全方位创新吹响了集结号。
今天,数据已成国家基础性战略资源,金融行业对数据重视度的加强也在日趋回归本性,数据与金融行业一直形影相伴,可以看成是金融业发展的基石。目前金融业每天产生大量未加工可量化的数据,金融数据流的产生、存储、分析以及使用正在改变着他们的发展路径。人们用海量性、多样性、快速性、准确性和价值性5个“V”来标示大数据,其中海量性、多样性和快速化说明的是数据生成过程、如何采集数据和存储数据,而准确性和价值性是指处理数据的质量和数据的有用性,而价值性才是企业获取数据的真正目的,也是券商提升市场洞察力和交易决策能力赖以生存的基础。
在过去几年里,越来越多的券商采用数据驱动方法推进针对性服务,以降低风险和提高业绩。他们执行特殊的数据分析程序来收集、存储、管理一系列资料,并分析大数据集,识别关键业务,以便给客户提供更好决策。可利用的金融数据源包括股价、外汇和衍生品交易、交易记录、高频交易、无结构化新闻和文本、以及隐含在社会媒体和网络中的消费者信心和商业情绪等。在大数据的趋势下,市场信息所包含的数据量及其多样性逐渐增加,促使企业提升处理和分析大数据的能力。
有些企业认为只要收集足够多的数据,即可得到充分的信息资料,这在浪费存储资源的同时忽视了客户的真正需求。其实,数据量越大,包含的噪声就越多,有价值信息的获取也就越艰难,对于券商来讲,数据量之大不是关键,数据收集和开发只有在充分利用并能解决实际问题的时候才是有用的。可见,关键之处在于挖掘并使用高价值的数据,这些数据可转化为智能数据。智能数据一般是结构化且可控制的,对于券商来说是强有力的发展工具。从市场影响的角度,智能数据能使得券商更好的理解客户,并能将相关信息传递给潜在客户和当前客户。因此,智能数据可以看成是大数据过滤掉噪声后得到的数据,是能够产生价值并被券商所高效利用来解决实际问题的数据。
按照数据的可使用程度,可将数据分为大数据、小数据和智能数据。大数据是企业简单收集的所有数据的集合,这是包含噪声的原始数据。小数据是包含非常具体属性的数据集,用来确定当前状态和条件,它可通过大数据集生成。小数据是根据客户的特定需求,有针对性地找出能给客户提供决策支持的客观依据。大数据提供了总体概况,而小数据提供了实时、特定信息。不同于大数据,小数据是利用现有资源,券商可通过数据了解客户投资需求和偏好、以及他们对于某投资行业的看法,通过分析客户的反馈,提高服务质量,还可以通过数据资源来分段和精选客户。对于小数据利用价值的提升,将使得券商可以高效地利用现有资源,避免了购买大数据处理机器所带来的财力超支。数据管理是大部分券商所面临的最大挑战,即使是处理小数据也常常受到数据噪声的困扰。
智能数据作为过滤掉噪声的数据,是在对原始数据进行清洗、整理并集成后得到的数据,其获取具有一定的难度,利用智能数据,不但可以了解券商和客户的当前状态,还能预测将来一段时间内的状态。同时,还可以根据投资者情绪指数、交易量等信息,利用数据挖掘、文本挖掘技术预测股市的大致走势,为客户提供一定的参考依据。智能数据利用传感器、测量技术以及包含预测模型的软件技术监测出即将发生故障的部位,并提醒工作人员提前做好应对准备。
目前已有券商采用Hadoop的运行环境,其处理能力经接近于实时处理,未来还需要在安全和性能方面提高效率,并提出高效的运营方案。智能数据对人机的要求都比较高,它需要良好的基础设施以完成大型计算和存储的功能,平台要求并行和可扩展性,在部分服务器出现故障时仍能正常运转;在系统软件中安装具有预测性功能的模型,能根据行情不断变化来调整系统的最优值。同时,系统还需要能充分理解模型及运用并有处理实际数据能力的专门人才。
高频交易是另外一个很好的例子。高频交易利用计算机在短时间内完成成千上万次交易,每次仅获取微薄利润,成千上万次利润叠加就是相当可观的收入。但高频交易并非无可挑剔,近几年利用高频交易得到的利润在下降,部分原因是越来越多的人使用这种技术来消除系统的低效率,系统作为整体变得越来越高效,这意味着金融机构不得不利用数据开发出更多的创意和创新来预测未来股市,帮助客户更多盈利,并设计出他们乐于购买的产品。结构化数据对于高频交易的分析具有明显优势,但随着高频交易所获利润的快速下降,分析人员开始从非结构化数据中寻找市场机会。交易员正试图寻找更好的方法来理解不断加强的信息流,范围从新闻报道到社交媒体等,将现实世界的事件转化为市场洞察,从而增加交易效率和投资收益。
目前一些互联网公司已对数据做战略规划,支付宝钱包增加了股票行情,直接提供股票报价,他们拥有最重要的客户资源,比如阿里拥有大量的消费者数据、金融数据、物流数据,可据此开发新产品和新商业模式。券商应抓紧有效整合多方数据,分析挖掘其中的业务价值,提升自身未来的竞争力,真正做到“大数据、小数据、智能数据、群数生辉;广挖掘、深挖掘、互联挖掘、多挖出金”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27