京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本文为HCR-慧思拓电商数据研究总监张淳投稿,如需转载请注明作者与来源。
投稿可将稿件发送至邮箱songpeiyang@pinggu.org
传统研究时代,知觉图(perceptual map)是一个简洁直观解析品牌定位的经典工具,然而随着大数据时代的降临,传统的数据获取方法受到了不断的冲击,原来使用焦点小组(Focus Group) 或调研问卷获得数据变成了一项费时费力,且耗费成本的工作。大数据背景下,可不可以有更简单,更快捷的方式获知品牌及其竞争对手的定位?可不可以快速评价品牌定位是否达到目标位置?可不可以全面检验修正品牌传播策略正确与否?这些问题都值得我们来探讨。
先说说知觉图的含义。知觉图是消费者对某一系列产品或品牌的知觉和偏好的形象化表述。目的是尝试将消费者或潜在消费者的感知用直观的、形象化的图像表达出来。特别是用在产品、产品系列、品牌的定位方面,也会用于描述企业与竞争对手的相对位置方面。
知觉图可以是多维的,但通常的情形是二维的。下图通过两维展示了消费者心目中笔记本电脑品牌在用户导向/标准配置,创意设计/经济实用方面的品牌定位。此例中,消费者认为,苹果品牌代表了创新设计及用户导向的特性。而三星笔记本则代表了经济实用和标准配置。
*非真实数据,仅用于展示
绘制知觉图,涉及到至少6个步骤:
1.确定研究方向:作为咨询研究公司,研究方向往往是通过对消费者的研究,获取其对于客户某产品及其竞争对手产品的感觉或偏好。这时我们要选择符合该产品的一系列变量指标以及想要研究的目标品牌。通常来说, 品牌和变量指标之间存在一个理想的比例关系,即1.3-1.6倍,也就是说如果研究8-10个品牌,大致需要14-15个变量。在传统研究时代,通过问卷获取消费者认知的阶段中,对于品牌的研究一般不超过20个,否则可能导致调查对象的疲倦,最终影响调研结果。而在大数据获取的背景下,数据是本身的获取是相对客观的,并不存在这个问题。这也算是大数据绘制知觉图的优势之一。
2.获取数据:本次介绍的大数据获取用户感知数据的方式,主要来自电商评论数据的获取。与传统途径相比,它具有采集快速,数据量大的特点。在我最新的研究项目中,仅6个月内关于几大剃须刀品牌的商品评论数据就采集33万条之多,而采集时间却仅用了一天。省去了问卷设计,调研对象邀约,答题,统计等多个环节,最终获取到多于问卷调研对象百倍的原始数据。当然这种大数据的采集方式,也会存在短板,比如评价不同品牌的个体不相同,个人评论的尺度的不同可能会影响最终的结果,但通过大量级的数据收集,可以将这种误差控制在可控范围内。任何一项研究都可能存在误差,而传统问卷抽样所导致的误差问题可能更明显。
3.确定产品变量:传统问卷的采集形式中,确定产品维度的工作是在数据采集前完成的,即先确定需要考察的产品属性,之后体现在问卷设计当中向调查对象提问。在大数据的研究方法中,在数据采集之后,可通过高频属性的方式,提炼出某产品最受关注的一系列属性。例如:物流,服务,促销,价格,外观,功能,质量,体验等。每一项指标分为正面,中性,负面。相当于以往问卷式研究中的1-3分量表,即负面等于1分表示不满意,中性等于2分表示一般,正面等于3分表示满意。
4.数据处理:计算每一条评价在不同的指标下的分数,汇总后取平均值,得到不同品牌在各项指标下的平均得分。此处以剃须刀为例(非真实数据):
用因子分析中的主成分分析法可以得出每个品牌及每项指标的两维(X,Y)值:
|
飞利浦 |
.671 |
-.580 |
|
博朗 |
1.106 |
1.099 |
|
飞科 |
.788 |
-.643 |
|
松下 |
.848 |
.701 |
|
超人 |
-1.321 |
1.646 |
|
奔腾 |
-1.340 |
-.395 |
|
朗威 |
-.089 |
-.839 |
|
科美 |
-.662 |
-.990 |
|
物流 |
.963 |
-.092 |
|
声音 |
.935 |
.166 |
|
服务 |
.932 |
-.296 |
|
质量 |
.899 |
-.187 |
|
动力 |
.795 |
.328 |
|
剃须体验 |
.694 |
.350 |
|
促销/赠品 |
-.692 |
-.427 |
|
价格 |
-.644 |
-.326 |
|
包装 |
.099 |
.867 |
|
外观设计 |
-.081 |
.857 |
|
电源 |
.500 |
.818 |
|
剃须效果 |
-.127 |
.759 |
|
便携性 |
-.145 |
-.117 |
5.绘图:根据品牌及指标的X,Y值,绘制出知觉图。在绘制知觉图的时候,有一项工作是非常重要的。即坐标轴的命名。此处可根据轴两侧45%角内指标的特性,为X,Y轴命名。例如:X轴负半轴,可根据便携,价格和促销/赠品来命名,比如“经济实用”。如果遇到命名指标数量过少的情况,如Y轴负半轴,则可用正半轴相关指标的反义词来辅助命名。
(*非真实数据,仅用于展示)
6.图表解读:位置越相近的品牌,说明他们的市场定位越接近。而同属一个象限的品牌,在本质上可以被聚类。例如博朗与松下;奔腾,科美及朗威;飞利浦与飞科。他们彼此形成强烈的竞争关系。对于这些品牌,可以通过知觉图检测品牌定位的正确与否,通过逐渐改变品牌定位的方法,迁移到理想的新位置。
大数据时代的到来,提供了我们更多,更大的数据。获取数据的时间缩短了,成本降低了。但对于传统研究方法的借鉴,仍然是一个值得关注的话题。
作者介绍
张淳,HCR-慧思拓 电商数据研究总监。DePaul University营销分析专业硕士(全美唯一设立数据分析与营销结合专业的学校)。多年消费品行业研究经验,专长领域电商大数据,曾服务宝洁,联合利华,金佰利,伊利,蒙牛,天翼,美的等大型品牌客户,行业涉及母婴,家电,日化,数码,医疗等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09