
百个业务员的销售分析,你的Excel还够用吗
每个老板都希望每天醒来,能清楚了解公司的销售状况。
但当公司的业务开展到数十个省市,有上百个业务员时,老板就像是被关进了小黑屋。只有在各个大区负责人来汇报,告诉你公司业务的内容与细节,才能在小黑屋上开个小窗:哦,原来我们销售状况是这样的啊。
这时老板往往会制定一大堆复杂的销售绩效,要求各个分、子公司填写各种各样的销售数据,用Excel做这样那样的销售分析报表,梦想着每天早上看看几十个Excel报表就知道运营中存在的所有问题。
想象很美好,现实很骨感
从电话呼出,销售拜访,需求分析……各个环节的转化率。
截止昨日为止,我们这一季度的销售回款率。
所有月销售同比下滑超过10%的区域、品类、渠道、销售员,实时通知责任人整改。
……
这些需求对老板再平常不过了。但是想要满足这些需求可不简单,在过去如何实现这些需求呢?
做个Excel的数据模板下发到各个分、子公司用来收集数据,开个电话会议,布置工作,解释填报的规则。(耗时1天)
收到反馈回来的数据,发现其中有着各种各样的问题,比如填错了客户公司名称、漏写了地区字段、单元格格式错误……需要一一校对。(耗时3天)
从市一级公司,到省一级,再到大区,最后再到总公司,以上流程都要再走一遍,半个月都过去了。
拿着这堆过时的数据还能再做什么决策呢?
为了解决这些问题,公司可能已经上了ERP、CRM等各种系统。
但系统间的数据不打通,生成的报表只有固定的几个字段,如果需要额外数据,只能找IT部门帮忙从业务系统中导出,再将N张Excel的数据合并到一张表格中,而这才完成了做销售分析的数据准备工作。
比如为了查询销售回款率,往往需要在财务系统中生成报表,查询实际入账金额,然后将数据导入Excel中,再与CRM生成的报表匹配,查询该笔销售的负责人。
“
怎样才能实时拿到最鲜活的销售数据,让数据流像神经一样遍布企业的各个组织,反馈一线最真实的运营状态?
”
找个简单的办法搞定他
F-One采用了组件化的设计,有开放的API接口,有指标建模引擎,能自定义工作流,有多级权限管理,有报表引擎,可以自定义仪表盘,最重要的是F-One能把这些模块组件联动起来。
通过打通CRM、ERP、订单系统的数据,F-One直接将需要的数据抽取到系统中。不需要再找IT,跑各种各样的数据,再将数据清洗,合并到一张Excel中。
▲F-One的数据流不需要懂SQL等IT技能,点击拖拽就能完成从数据抽取、清洗、合并等数据准备流程。
根据这些数据,公司能定义管理层最为关心的指标销售同比增长、产品盈利率、销售预算执行率等。将这些核心指标的计算逻辑配置到F-One中,这样F-One就能自动整合各个数据源,实时计算出企业核心指标:
特别需要提到的是,F-One是面向业务人员的业务建模和数据分析平台,不需要IT部门过多的支持,业务部门就能修改各个指标的计算逻辑。
举个简单的例子,过去计算产品应收账款回款率时,只计算了当期到款与当期销售两个维度,现在老板要将期初应收也加入计算公式中。
过去,业务部门可能得去找IT部门重新导出报表。在F-One中,业务部门只需要在系统中调整计算公式,就能生成新的考核指标,不需要额外的IT开发支持:
F-One能让所有的分、子公司都在一个表单中填写数据,实时同步数据,不需要像过去一样层层申报。
除此之外,F-One还提供多种权限设置规则。可以根据职务、职能的不同,限制用户能进行的操作,以及访问的数据。
例如,末级销售员只能填报、编辑自己负责区域内的销售额:
华东区销售总监可以看到上海、福建、浙江、江苏、安徽、山东的所有销售数据:
大老板则可以通过F-One的可视化报表查看提炼过的数据洞察,了解全面的销售情况:
按需配置,在同一平台实现协同数据分析,并且让企业核心数据只被应该看到的人看到,不会出现不必要的扩散(比如在过去,需要大量初级人员整理销售量、回款数额等企业核心数据)。如果数据出现异常,比如上海的应收账款回款率率出现大幅度下降,系统会自动发送预警邮件给负责人,及时跟进整改。
虽然公司所属行业不同、产品不同,销售分析关注的指标自然也各有不同。但所有的企业都面临相同的问题,随着公司规模扩大,组织架构越来越复杂,数据量越来越大,Excel手工统计的方式不仅耗时,而且准确率极低。即使部署了大量IT系统,业务部门依然需要等待IT支持,无法快速响应业务运营的需求。
该制定怎样的渠道政策激活经销商?哪种绩效考核能提升销售效率?产品的库存结构是否合理……在面对决策时,老板依然只能“凭经验、靠感觉”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26