
企业数据挖掘实际运用的模型
这是好几年前写的一篇文章,今天突然翻出来看到,我觉得对于很多在做数据挖掘的朋友有一定参考。
听了几位从公司几位同事和外面专家介绍关于数据挖掘、数据模型的一些东西。总的来说,很有收获,当然收获并不在具体的技术细节上。更多是在看法,理念上。
我以前也搞过很多模型,从最基本的聚类、决策树、logisitic、回归分析、生存分析、神经网络,还有市场调研中一些联合分析、感知分析、因子分析/主成分分析,当然还有更高级一点的结构方程。在期货公司呆的一年中,还搞过计量模型:ARMA簇、ARCH簇、VaR等,当时对自己产生的模型,感觉很不自信。因为当时的模型识别率指标(例如:R方,并没有达到传说中在学校做论文或者平时玩模型的90%以上),感觉这个模型就是不好的,并不完美。
去年抱着学习的心态,去一家数据量极其丰富的互联网公司,想去看看大公司玩数据到什么程度,虽然以前和许多牛人们交流过,但当时一直觉得应该不是这么简单。
到新公司后同几位做modeling的同事和听了外部专家的演讲,某种程度上我释然的。感觉自己以前在做模型的时候,更多是在做学术研究一样,也许和我是一个追求完美的人有关。
例如:模型成立的假设条件,与变量选择。
模型的假设条件,对数据的分布要求;
模型的变量选择,以及变量的各种预处理;
针对最终的目的理论上可以使用的模型,都去尝试。比如:会员流失问题:决策树、逻辑回归、生存分析,我都会去尝试使用,根据其最终的LIFT值最大的,然后选择。
但实际上,从几位同事与朋友的介绍来看,逻辑回归是许多公司是都在用的模型,
为什么不用更“高级”,更先进的模型呢?原因有二个:
第一个:模型的健壮性。这些模型都是被之前实践证明是最好的,或者性能相对来说最稳定的。衡量的指标不外乎:稳定性、可解释性(这点在商业很重要)、简单性。
第二个:商业运用,已经是流程式的过程,不会轻易去改变,就是你生产线上一样。模型的轻微改变可以要牵动许多方面,是一个大工程。
从与他们的交流来说,我好像忘记了一个东西:这些都是为商业服务的,商业过程不要太复杂,最好的商业模式往往是最简单,不是吗?
我的观点:也许和自己的工作经历有关,但是我觉得对于一个数据分析师或者是数据建模师来说,虽然你用的很简单。但是你掌握的东西应该很多,很复杂,也正是因为有这些基础,你才能选择最好的模型,所以在玩数据挖掘或者数学建模为商业服务的时候,经验很重要,当然这些专业知识的扎实也是最根本的之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11