京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习:竞争优势的新探索
为了获得更广泛的数据分析和数据理解,提高内部、外部流程效率,对用户有更好的理解,增强自身竞争力。越来越多的公司实施机器学习战略。
编译:T客汇 卿云
最近,MIT技术评论定制和Google Cloud完成了一项名为《机器学习:竞争优势的新探索》调查,发现:
●2017年50%的公司希望通过机器学习可以更好的理解客户
●48%的企业认为机器学习能够增加自身竞争力。
●未来机器学习的几大应用有自动化代理/机器人(42%),预测计划(41%),销售和营销目标(37%)还有智能助理(37%)。
报告关键观点如下:
如果公司正在使用机器学习,你想从中获得什么?
采用机器学习的公司,其中50%是为了寻求更广泛的数据分析和数据理解,如此能增强其核心业务。46%是为了增强企业优势提高竞争力,45%是为了更快的数据分析能力以及敏锐的洞察力;44%是为了提高研发能力,希望藉此推出新一代产品。
如果你的公司使用机器学习,你从中已经得到了什么?
正在使用机器学习的公司中,45%是为了更广泛的数据分析和数据理解。只有35%的公司是为了更快速的数据分析和敏锐的洞察力,除此之外也为了开发新一代产品而增强研发能力。下图比较了企业从机器学习中获得的好处。机器学习潜力的主要因素之一是面向服务的框架,这个框架通过设计同步实时消耗数据,但是无需移动数据。enosiX正在迅速成为这一领域的领导者,专注于同步实时Salesforce和SAP集成,使公司对数据有更好的理解,提供可衡量的优化意见。
2017年你的IT预算中有多少是专为机器学习的?
采用机器学习的公司中有26%公司在机器学习领域的投入超过了其用预算的15%。79%受访者正在投资机器学习。下图展现了调查期间2016年后期和2017年前期IT预算中机器学习的分布情况。
如果你的公司计划使用机器学习,你想从中寻求什么?
2017年50%的公司计划采用机器学习是为了更好的了解用户。48%是为了增加公司优势提高竞争力。45%是为了更广泛的数据分析和数据理解。下图是企业希望从机器学习中所获的收益。
自然语言处理(NLP)(49%),文本分类和挖掘(47%),情感/行为分析(47%)和图像识别、分类和标记(43%)是如今机器学习领域使用的前四大项目。目前正在进行的其他项目包括建议(42%),个性化(41%),数据安全(40%),风险分析(41%),在线搜索(41%)以及本地化和制图(39%)。 未来机器学习的最大用途包括自动化代理/机器人(42%),预测计划(41%),销售和营销目标(37%)以及智能助理(37%)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05