
数据科学家的15项原则
作为一个数据科学家,我为我的日常工作总结开发出15项原则,这些是我本人也遵循的:
1、不要用数据说谎或吹牛: 对经验性证据要诚实坦率。最重要的是不要用数据自欺欺人。
2、建立永久工具并分享给他人: 花费一些日常工作时间去建立一些能使自己和他人生活变得轻松的工具(译者补充:我为人人,人人为我)。我们可是该死的人类,我们应该是工具的制造者!
3、不断自我教育: 看在佛祖的份上,你可是个科学家哦。去阅读研究生水平的核心数学和统计方法教材吧,永远不要安逸于你在走廊里从同事那得到的对某个方法的拙劣解释,学习基本原理可以让你玩出花样来。阅读最近的论文,参加研讨会,发表和评论论文。对此没有捷径。
4、提高你的技能: 学好一种语言,这样你才能被称为行家里手。其他语言也要学到能与别人沟通。不要忘记,SQL和英语很象,这个星球上每个白痴都能说,但你只有真正掌握它才可以写出优美的诗篇。学习一种编译性语言、一种解释性语言,和R语言。或者只需要学习R!它是丑陋的,但它会给你一个优势。搞透Matlab,你已经不再是没毕业的学生了。学习Unix,即使你平时使用Windows,学习sed和grep等所有那些东西,你可以用bash和powershell做些奇妙的事情。如果你愿意,也学学Hadoop,但要知道它是一个蹩脚的系统。
5、明白数据科学家有个生存意义 “踢人们屁股并让他们震惊”: 每天做一件与此相关的事。(译者注:kick ass在一般情况下指“很厉害;很拽”,但对于数据科学家来说,通常是用数据来揭示人们错误或具有危险性的行为,以此引起关注,所以用本意“踢屁股”反而比较合适)
6、通过向别人展示工作来经常挑战自我:不要害怕一些恶棍会批评你的工作,粉碎他们。如果你想害怕蟑螂的话,那你就不要走路了!
7、不要吝惜知识,也不要害怕问问题: 有些人对他们的知识缺乏信心,不去分享它,原谅他们,但不要成为他们中的一个。
8、先开发出一些思路,然后听取别人的看法,利用他们关于这一领域所知道的知识,但不要让你自己被其束缚: 如果他们真牛到可以用他们所知道的来解决问题,他们就不会来找你要解决方案了。
9、出去和人们在一起,与之交谈,互通有无,他山之石可以攻玉。
10、为你温和的代码建立个令人印象深刻和交互性强的用户界面: 代码是我们的语言(译者注:但不是用户的,所以……),让你的代码通过好的UI来闪耀光辉吧。
11、有效使用可视化技术,避免难以理解的图形: 可视化的唯一用途是使数据易于理解而非令人困惑。
12、学习新技术,努力理解经典技术的原理
13、多揽多做: 这就是天才工作的方式。不要害怕提出创造性的想法。你听说过“低调说话,高调做事”?不要觉得这很华丽,这其实是无能鼠辈工作的方式,不要成为他们中的一个。
14、保持创造力和关注: 你可以通过创造力和关注取得成功(咖啡因对这个有点帮助,但别过头儿)。
15、积极起来,努力工作。如果有人想阻止你,只管碾碎他们。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14