京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度分析大数据的八大趋势与创新
伴随着大数据技术与数据分析的发展趋势,拥有丰富数据的分析驱动型企业应运而生。下面我们来具体看下大数据技术与数据分析有哪些趋势和创新。文中,也用了一些IBM在帮助客户找到创新型大数据解决方案的应用案例。
1. 数据驱动创新
如今,数据已成为企业竞争优势的基石。利用数据和复杂数据分析的企业将目光投向了“创新”,从而打造出高效的业务流程,助力自身战略决策,并在多个前沿领域超越其竞争对手。
2. 富媒体数据分析呼唤先进技术
如果没有合理分析,大部分数据毫无用处。 而大数据和数据分析又会带来哪些机遇呢?国际数据公司(IDC)预测,2015年,富媒体(视频、音频和图像)分析将至少扩大两倍,并成为大数据以及分析技术投资的关键驱动力。富媒体数据分析需要先进的分析工具,这为企业提供了重大的市场机遇。以针对电商数据进行图像搜索为例。对图像搜索结果的分析要准确,且无需人工介入,这就需要强大的智能分析。未来,随着智能分析水平的不断提升,企业将获得更多机遇。
3. 预测分析必不可少
当前,具有预测功能的应用程序发展迅速。预测分析通过提高效率、评测应用程序本身、放大数据科学家的价值以及维持动态适应性基础架构来提升整体价值。因此,预测分析功能正在成为分析工具的必要组成部分。
4. 混合部署是未来趋势
IDC预测,未来5年,在基于云的大数据解决方案上的花费将是本地部署解决方案费用的4倍之多,混合部署将必不可少。IDC还表示,企业级元数据存储库将被用来关联云内数据和云外数据。企业应评估公共云服务商提供的产品,这有助于其克服大数据管理方面的困难:
安全和隐私政策及法规影响部署选择;
数据传输与整合要求混合云环境;
为避免出现难以应付的数据量,需构建业务术语表并管理映射数据;
构建云端元数据存储库(包含业务术语、IT资产、数据定义和逻辑数据模型)。
5. 认知计算打开新世界
认知计算是一种改变游戏规则的技术,利用自然语言处理和机器学习帮助实现自然人机交互,从而扩展人类知识。未来,采用认知计算技术的个性化应用可帮助消费者购买衣服,挑选酒,甚至创建新菜谱。IBM最新的电脑系统Watson率先利用了认知计算。
6. 大数据创造更多利润与价值
越来越多的企业通过直接销售其数据或提供增值内容来获利。 IDC调查表明,目前70%的大公司已开始购买外部数据。到2019年,这一数字将达到100%。因此,企业必须了解其潜在客户重视的内容,必须精通包装数据和增值内容产品,并尝试开发“恰当”的数据组合,将内容分析与结构化数据结合起来,帮助需要数据分析服务的客户创造价值。
7. 物联网推动实时分析发展
预计物联网未来5年的复合增长率将达30%。它将以商业驱动者的角色引领企业迈出使用流分析的第一步。物联网引发的数据大爆炸将促进实时分析和流分析的发展,要求数据科学家和主题专家筛选数据,寻找可开发成事件处理模型的可重复性模式。然后,事件处理模型可处理传入事件,将其与相关模型关联,并监测需要响应的实时情况。此外,事件处理不间断,所以要求响应时间尽可能接近于实际时间。事件处理因此成为大数据系统和应用程序中不可或缺的模块。
8. 复合型数据分析人才之争
很多企业都希望将业务知识与业务分析结合起来,但很难找到复合型数据分析人才。特别是大企业对此感触颇深。随着企业不断在内部加强技术的使用,对复合技能的需求变得越来越明显。业务知识和分析技能的结合对速度驱动型企业非常重要,这有助于企业深入理解业务驱动力以及相关数据,从而更快地将商业洞见转化为行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05