京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于数据挖掘的客户流失分析案例
客户挽留在很多行业都是一个备受关注的问题,比如电信、银行、保险、零售等。要做客户挽留就需要对客户流失进行预警、客户流失原因分析、客户满意度或忠诚度研究、客户生命周期研究等相关问题进行深入而全面的分析。例如,对客户的行为特征进行分析,可以了解有多少客户流失,客户是什么时候流失的,以及客户是如何流失的等问题,从而监控客户流失、实现客户关怀。
应用数据挖掘技术可以根据过去拥有的客户流失数据建立客户属性、服务属性和客户消费数据与客户流失可能性关联的数学模型,找出客户属性、服务属性和客户消费数据与流失的关系,给出明确的数学公式或规则,从而计算出客户流失的可能性。
电信行业较早地提出了客户关系管理、关系营销等营销管理模式,学界和企业界的积极参与也推动了客户流失行为的相关研究。电信运营商在多年的业务支持系统建设中,积累了大量的历史业务数据,这些数据涉及到用户话单、通信计费、客户交费、市场营销、业务收入等各个方面,它们不仅是历史记录的呈现,同时还蕴含了客户的消费模式,客观上就为数据挖掘提供了丰富的素材。对于运营商来说,成熟有效的管理模式和技术可以更好地进行客户管理,提高用户的粘性才是硬道理。
建立流失模型可以解决由于客户离网导致的市场份额减少、营销成本增加、收入降低等问题,提高挽留成功率,降低离网率,降低挽留服务成本,减少由于客户离网所带来的收入损失。对客户按照流失倾向评分,产生最可能流失客户的名单,再由运营商对其进行挽留,把损失降到最低。
客户流失分析大致步骤主要分为以下四步:
一是寻找关键因子,比如探索用户离网的影响因素,根据影响因素判断用户离网发生的概率。通过研究现有套餐产品客户在呼叫通话、业务使用等各方面的行为特征,找到关键影响因子;
二是构建预测模型:采用数据挖掘监督类模型技术,训练得到潜在客户预测模型,用于预测将会选择该类套餐产品的潜在流失用户群,并以概率形式量化之。如果已经建立了Logistic回归模型,则可以根据模型,预测在不同的自变量情况下,客户流失的概率有多大;
三是判别:实际上跟预测有些类似,根据Logistic模型,判断客户有多大的可能性将会流失。这种技术与线性回归类似,只是用分类目标字段代替了数值字段,而在目标含有两个截然不同的类别时可以使用二项模型;
四是推送营业前台:通过营销管理平台,直接将高概率产品目标流失客户群推送到营业厅、短信及网站、社区经理等营销渠道,将挽留策略和产品在合适的时间、以合适的语言推荐给合适的客户,从而赢得营销。
客户流失模型需要完成两个方面的任务,即分析流失客户的特征,导致客户流失的因素及客户流失在这些因素上的分布情况,还有就是得出潜在的流失客户群。
客户流失预测包括决策树、神经网络和Logistic回归等研究方法,下面就通过一个利用二项Logistic回归预测电信客户流失的实例,为大家介绍一种可用的客户流失模型,为运营商的客户关系管理提供有益的借鉴,也为其他行业的客户流失分析提供挖掘思路。
客户流失的几个因素,主要有:客户基本信息,包括年龄、性别、邮编、地址等;客户档案,包括手机号、付费方式、停机日期、入网时长、工龄、是否使用租用设备、是否使用电话卡业务、是否使用语音;客户账户,包括服务、是否使用互联网等;计费信息,包括拨打电话数、付费总额、欠费总额等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27