
基于数据挖掘的客户流失分析案例
客户挽留在很多行业都是一个备受关注的问题,比如电信、银行、保险、零售等。要做客户挽留就需要对客户流失进行预警、客户流失原因分析、客户满意度或忠诚度研究、客户生命周期研究等相关问题进行深入而全面的分析。例如,对客户的行为特征进行分析,可以了解有多少客户流失,客户是什么时候流失的,以及客户是如何流失的等问题,从而监控客户流失、实现客户关怀。
应用数据挖掘技术可以根据过去拥有的客户流失数据建立客户属性、服务属性和客户消费数据与客户流失可能性关联的数学模型,找出客户属性、服务属性和客户消费数据与流失的关系,给出明确的数学公式或规则,从而计算出客户流失的可能性。
电信行业较早地提出了客户关系管理、关系营销等营销管理模式,学界和企业界的积极参与也推动了客户流失行为的相关研究。电信运营商在多年的业务支持系统建设中,积累了大量的历史业务数据,这些数据涉及到用户话单、通信计费、客户交费、市场营销、业务收入等各个方面,它们不仅是历史记录的呈现,同时还蕴含了客户的消费模式,客观上就为数据挖掘提供了丰富的素材。对于运营商来说,成熟有效的管理模式和技术可以更好地进行客户管理,提高用户的粘性才是硬道理。
建立流失模型可以解决由于客户离网导致的市场份额减少、营销成本增加、收入降低等问题,提高挽留成功率,降低离网率,降低挽留服务成本,减少由于客户离网所带来的收入损失。对客户按照流失倾向评分,产生最可能流失客户的名单,再由运营商对其进行挽留,把损失降到最低。
客户流失分析大致步骤主要分为以下四步:
一是寻找关键因子,比如探索用户离网的影响因素,根据影响因素判断用户离网发生的概率。通过研究现有套餐产品客户在呼叫通话、业务使用等各方面的行为特征,找到关键影响因子;
二是构建预测模型:采用数据挖掘监督类模型技术,训练得到潜在客户预测模型,用于预测将会选择该类套餐产品的潜在流失用户群,并以概率形式量化之。如果已经建立了Logistic回归模型,则可以根据模型,预测在不同的自变量情况下,客户流失的概率有多大;
三是判别:实际上跟预测有些类似,根据Logistic模型,判断客户有多大的可能性将会流失。这种技术与线性回归类似,只是用分类目标字段代替了数值字段,而在目标含有两个截然不同的类别时可以使用二项模型;
四是推送营业前台:通过营销管理平台,直接将高概率产品目标流失客户群推送到营业厅、短信及网站、社区经理等营销渠道,将挽留策略和产品在合适的时间、以合适的语言推荐给合适的客户,从而赢得营销。
客户流失模型需要完成两个方面的任务,即分析流失客户的特征,导致客户流失的因素及客户流失在这些因素上的分布情况,还有就是得出潜在的流失客户群。
客户流失预测包括决策树、神经网络和Logistic回归等研究方法,下面就通过一个利用二项Logistic回归预测电信客户流失的实例,为大家介绍一种可用的客户流失模型,为运营商的客户关系管理提供有益的借鉴,也为其他行业的客户流失分析提供挖掘思路。
客户流失的几个因素,主要有:客户基本信息,包括年龄、性别、邮编、地址等;客户档案,包括手机号、付费方式、停机日期、入网时长、工龄、是否使用租用设备、是否使用电话卡业务、是否使用语音;客户账户,包括服务、是否使用互联网等;计费信息,包括拨打电话数、付费总额、欠费总额等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13