京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于数据科学来说,现在是发展的黄金时期。这是个新领域,但增长迅速,同时数据科学家的缺口也很大。最好的学习方法是通过实践,知道自己真的需要学习什么,最重要的是,当你通过这种方式学习,你可以获得立刻就可以用到的技能。
1、学会爱数据
数据科学是一个广泛而模糊的领域,这使得它很难学习。 没有动力,你最终会中途停止对自己失去信心。你需要些东西来激励你不断学习,即使是在半夜公式已经开始变的模糊,你还是想探究关于神经网络的意义。你需要些动力来让你发现统计、线性代数和神经网络之间的联系,当你在困惑“下一步我该学习什么?”的时候。我学习的入口是用数据来预测股市,尽管当时我完全不熟悉。我编码的第一批项目用于预测股票几乎没有统计,但是我知道它们表现的并不好,所以我日以继夜的工作让它们变的更好。我痴迷于改善程序的性能,我痴迷于股票市场,我学习去爱数据。我去学习一切能让这个项目结果更好的技能。并不是每个人都会痴迷于股市预测,但重要的是要发现你想学习的东西。数据可以计算出关于你的城市很多新鲜有趣的事情,比如所有设备在互联网上的映射、找到真正的NBA球员的位置,今年又哪些地方有难民,或者是其他事情。数据科学的伟大之处是有无限有趣的东西可以发现——那就是问问题然后找到一个方法来得到答案。
2、在实践中学习
学习神经网络、图像识别和其他尖端技术是很重要的,但大多数数据科学工作不涉及这些:90%的工作将是数据清理。精通几个算法比知道一点许多算法要好。如果你知道线性回归、k – means聚类和逻辑回归可以解释和诠释他们的研究结果,并可以用这些完成一个项目,你将比如果你知道每一个演算法,但不使用它们更优秀。大多数时候,当你使用一种算法,它将是库中的一个版本(你很少会自己编码支持向量机实现——这需要太长时间)。所有这些意味着最好的学习方法是在项目工作中学习,通过项目,你可以获得有用的技能。
一种方法是在一个项目中先找到一个你喜欢的数据集,回答一个有趣的问题。这里有一些好的地方。
另一种方法是找到一个深层次的问题,例如预测股票市场,然后分解成小步骤。 我第一次连接到雅虎财经的API,并爬下每日价格数据。然后我创建了一些指标,比如在过去的几天里的平均价格,并用它们来预测未来(这里没有真正的算法,只是技术分析)。这个效果不太好,所以我学会了一些统计知识,然后用线性回归。 然后连接到另一个API,清理每一分钟的数据,并存储在一个SQL数据库。 等等,直到算法效果很好。
这样做的好处是我在一个学习环境中学习。不仅仅学习了SQL语法,用它来储存价格数据,还比仅仅学习语法多学习了十倍的东西。学习而不应用的知识很难被保留,当你做实际的工作的时候也不会准备好。
3、学会沟通
数据科学家需要不断展示他们的分析结果。这个过程可以区别数据科学家的水平。交流的一部分是对主题的理解和理论, 另一个是理解如何组织你的结果。最后一部分是能够清楚地解释您的分析。 展示你的数据分析的结果。试着教那些对数据科学技术知识并没有什么概念的人,比如你的朋友和家人这可以可以帮助您理解概念。试着在聚会上演讲。使用github管理你所有的分析。在一些社区中活跃,比如Quora , DataTau , machine learningsubreddit。
4、向同行学习
你根本想不到你会从同行身上学到多少东西,在数据工作中,团队合作非常重要。在聚会中找一些同伴。开源软件包。给哪些写有趣的数据分析博客发消息看有没有合作的可能。
5、不断增加学习的难度
你完全熟悉这个项目的工作了? 你最后一次使用一个新概念是在一周前? 那么是时候做些更加困难的挑战了。如果你停止攀登,那么不进则退。如果你发现自己太舒适,这里有一些建议:处理更大的数据集。 学习使用spark。看看你能不能让你的算法更快。你将如何将算法扩展到多个处理器? 你能做到吗?理解更多的理论算法并使用。这会改变你的假设吗?试图教一个新手去做你现在正在做同样的事情。上面这些这至少是一个思路告诉你在开始学习数据科学的时候到底要做什么。如果你完成了这些,你将发现你的能力自然而然就提升了。我不喜欢那些“一个清单”这样的建议,因为这让我很难按部就班去做。我发现很多人在跟着书单或者课程学习中半途而废。我个人相信如果你有正确的目标任何人都可以学习数据科学。这是一个帮助你学习大数据的网站,其中包括了很多优秀的学习经验和讨论。你可以分析一些有趣的数据集,比如美国中央情报局的文件和球员统计。还可以完成一些项目,比如建立一个投资组合。如果你不知道如何分析,这也不是问题,我们会教你python。我们教Python因为它是最初级的友好语言,用于大量生产数据的科学工作,可用于各种各样的应用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12