京公网安备 11010802034615号
经营许可证编号:京B2-20210330
举例讲解Python中字典的合并值相加与异或对比
这里我们来举例讲解Python中字典的合并值相加与异或对比,以不同的字典为对象来进行操作,,需要的朋友可以参考下
字典合并值相加
在统计汇总游戏数据的时候,有些数据是是每天用字典存的,当我要对多天汇总的时候,就需要合并字典了。
如果key相同的话它们的值就相加。
不能用update方法,因为用update方法则相同的key的值会覆盖,而不是相加。
千言不如一码。
def union_dict(*objs):
_keys = set(sum([obj.keys() for obj in objs],[]))
_total = {}
for _key in _keys:
_total[_key] = sum([obj.get(_key,0) for obj in objs])
return _total
obj1 = {'a':1,'b':2,'c':3}
obj2 = {'a':1,'b':3,'d':4}
print union_dict(obj1,obj2)
输出
{'a': 2, 'c': 3, 'b': 5, 'd': 4}
sum([obj.keys() for obj in objs],[])这句可能不太好理解。
其实sum()函数也有"鲜为人知的参数",即第2个参数,start参数,默认是0。
而且不止可以是int类型,还可以是其他支持+操作符的东西,比如[]。
利用这一点,可以对二层数组打平成一层。
比如
>>sum([[1,2,3],[4,5]],[])
[1,2,3,4,5]
对字典diff("异或")
在游戏中,我要监控记录物品系统中的背包变动情况。("异或"的结果是相同的消除,剩下不同的,即变动的)
假设背包的存储结构是这样的。
是一个字典,{物品id:数量}。
在背包类初始化的时候,把背包物品信息copy保存到一个oldbag变量,进行一些物品操作后(比如使用物品,领取物品奖励等),在调用save()方法存进redis时,对新的bag字典与oldbag字典进行差异对比就得出变动情况了。
千言不如一码。
def symmetric_difference(_oldobj,_newobj):
_oldkeys = _oldobj.keys()
_newkeys = _newobj.keys()
_diff = {}
for _key in set(_oldkeys + _newkeys):
_val = _newobj.get(_key,0) - _oldobj.get(_key,0)
if _val:
_diff[_key] = _val
return _diff
oldobj = {'a':1,'b':2,'c':3}
newobj = {'a':1,'b':3,'d':4}
print symmetric_difference(oldobj,newobj)
输出
{'b': 1, 'd': 4,'c': -3}
代表玩家得到了1个'b'物品,4个'd'物品,失去了3个'c'物品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04