京公网安备 11010802034615号
经营许可证编号:京B2-20210330
挖掘大数据价值的正确姿势
如何在海量的数据中结合业务形态去挖掘数据价值,这是大数据的重中之重。
如果要找未来商业的代名词,“大数据”无疑是其中一枚。
资本市场和企业早就开始“押注”在这上面,从2011年开始,一直到现在,大数据概念火热的势头依然没有减弱,行业中也逐步出现商业化应用的典型案例。在2000年时,全球数据量中仅有四分之一的数据是以数字化形式存储,7年后,超过90%的数据是数字化数据,也就是说,现在几乎所有的数据都通过数字化形式存储保留下来了,而且,数据总量也在不断增加。据市场调研机构IDC预计,未来全球数据总量年增长率将维持在50%左右,2020年全球数据总量将是2011年的22倍,超过40ZB(相当于4万亿GB),其中,中国将占全球的21%左右,数据量将达到8.6ZB。
当下的各种智能硬件设备,特别是大家每天都离不开的手机正在将一切都数据化,但这并不表示所有数据都有用,如果数据转化不成价值,即便是有再多的数据量也没有用。而且,从文字上解读,大数据在思维概念上的确有指数量巨大的含义,但是同时也意味着数据种类的多样化,“数据描述形式不仅局限于文字的描述,还有图形、音频、视频等多种形式,从过去结构化数据变成一个非结构化数据”。
“另外,大数据是流动的,一定有时间轴的概念,即数据增长速度快,处理速度快,时效性高,肯定不是静态数据;还有一个就是价值,如何在海量的数据中结合业务形态去挖掘数据价值,这是大数据的关键。”唐青接着对《世界经理人》说到。
大数据分析的四大领域
在唐青看来,一个企业的发展,很重要的一点是要回答整个业务输出的问题,即如何产生价值。从业务场景来看,就是企业如何在关键业务流程中,做到通过数据分析来产生价值。从分析来说,如果分析是从简单的、小数量的数据开始,则达到的分析效果是有限的,因此一定要大规模的数据分析;而且,分析要在非常流动的数据环境里进行,所谓流动有两个层面,一个是数据的多元化,还有一个是数据分析的效率,这要求企业做有效的数据整合。
另外,其中很重要一点是多种数据类型的分析,涉及到对数据来源和文本数据的分析,还有客户在使用产品和服务过程中,他的路径是怎样的。唐青以开银行卡为例,一个客户开了一张银行卡,还要跟踪其消费情况,如有没有购买其他的分期贷款等行为路径。之所以叫多类型的分析,就是能从他的各种社交关系,通过他的消费轨迹等不同来源的数据信息进行分析。
“从客户角度来看,很重要一点是,要关心客户的情感体验,而不是把客户就当成一个ID。”唐青强调到,当下是一个高度社交化的社会,企业很关心到底谁跟客户有关联关系,谁是客户的家人、老板、同事,谁可以影响客户的购买决策和购买行为。
要实现大数据的价值,大数据公司需要知道客户是谁,如何很好的对客户画像,以及捕获这个客户的所有信息及其信息渠道。但是说起来容易做起来难,唐青总结了三大挑战,同时也是所有做大数据分析公司面临的挑战:
一是业务能力,是不是很懂业务领域的场景,在分析的时候,到底该在哪个业务场景里面进行改进。比如说信用卡,是分析卡的流失还是卡的深度交叉销售;还有发卡的风险以及临时授信的问题,到底又该在哪个业务场景去做分析。
二是人才资源压力,目前所有企业都面临这个问题,就是能否在合理的人员工资下,招到优秀的人才,这是很大的挑战。
三是洞察力,企业如何在操作层面、执行层面都能够有很好的洞察力。
从三大典型行业看大数据应用
唐青以金融、航空、快递这三个典型的服务行业为例,演绎大数据在行业中的应用。天睿公司北京总部及华北金融团队咨询服务部总监张天峰在采访中也指出,大数据其实是一种手段,更重要的是如何让大数据为业务服务。
金融行业现在正面临转型的挑战,过去该行业的产品是要提升面向客户业务的效率,比如银行,就像开店,看着进钱很多,但是到底能不能把客户吸纳过来,这就是很大的挑战,为此需要从产品、客户视角去分析。唐青认为在大数据应用上,中信银行是金融行业里做得比较不错的,此前中信的行长会议提出了二次转型的目标,即以客户为中心,去优化整个营销体系,对客户进行精细化管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27