
使用python将大量数据导出到Excel中的小技巧分享
今天小编就为大家分享一篇使用python将大量数据导出到Excel中的小技巧心得,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
(1) 问题描述:为了更好地展示数据,Excel格式的数据文件往往比文本文件更具有优势,但是具体到python中,该如何导出数据到Excel呢?如果碰到需要导出大量数据又该如何操作呢?
本文主要解决以上两个问题。
(2)具体步骤如下:
1.第一步,安装openpyxl,
使用pip install openpyxl即可,但是在windows下安装的是2.2.6版本,但是centos自动安装的是4.1版本,(多谢海哥的提醒)。
写的代码在windows下运行没问题,但centos上却报错了,说是ew=ExcelWriter(workbook=wb)少提供一个参数,于是果断在 237服务器上我已安装2.2.6版本的,问题解决。
pip install openpyxl==2.2.6
2.第二步,哈哈,没有啦,废话不说了,直接上代码,ps,代码中包含xlwt和openpyxl的两个实现版本。
(3)扩展阅读:通过查阅资料,发现网上众说纷纭,总结起来有如下几点:
python Excel相关的操作的module lib有两组,一组是xlrd、xlwt、xlutils,另一组是openpyxl,
但是前一组(xlrd,xlwt)比较老,只能处理由Excel 97-2003 或者Excel 97 以前版本生成的xls格式的excel文件,xlwt甚至不支持07版以后的excel ,这个格式excel文件一般来说,最大只能支持256列或者65536行的excel文件。
因此面对需要导出大量数据到excel的情况,你将有如下三种选择,
(1) 换一种存储格式,如保存为CSV文件
(2) 使用openpyxl—,因为它支持对Excel 2007+ xlsx/xlsm format的处理
(3) win32 COM (Windows only)
当然,我们要直面困难了,为了更好地展示数据给产品和用户,我们依然选择的第二种。
ps,非常lucky,一番搜索后我找到了openpyxl,支持07+的excel,一直有人在维护,文档清晰易读,参照Tutorial和API文档很快就能上手,就是它了~
(4) 闲话少说,直接上代码,敬请参考
# coding:utf-8
'''
# 希望对大家有帮助哈,请多提问题
create by yaoyz
date: 2017/01/24
'''
import xlrd
import xlwt
# workbook相关
from openpyxl.workbook import Workbook
# ExcelWriter,封装了很强大的excel写的功能
from openpyxl.writer.excel import ExcelWriter
# 一个eggache的数字转为列字母的方法
from openpyxl.utils import get_column_letter
from openpyxl.reader.excel import load_workbook
class HandleExcel():
'''Excel相关操作类'''
def __init__(self):
self. head_row_labels = [u'学生ID',u'学生姓名',u'联系方式',u'知识点ID',u'知识点名称']
"""
function:
读出txt文件中的每一条记录,把它保存在list中
Param:
filename: 要读出的文件名
Return:
res_list: 返回的记录的list
"""
def read_from_file(self,filename):
res_list=[]
file_obj=open(filename,"r")
for line in file_obj.readlines():
res_list.append(line)
file_obj.close()
return res_list
"""
function:
读出*.xlsx中的每一条记录,把它保存在data_dic中返回
Param:
excel_name: 要读出的文件名
Return:
data_dic: 返回的记录的dict
"""
def read_excel_with_openpyxl(self, excel_name="testexcel2007.xlsx"):
# 读取excel2007文件
wb = load_workbook(filename=excel_name)
# 显示有多少张表
print "Worksheet range(s):" , wb.get_named_ranges()
print "Worksheet name(s):" , wb.get_sheet_names()
# 取第一张表
sheetnames = wb.get_sheet_names()
ws = wb.get_sheet_by_name(sheetnames[0])
# 显示表名,表行数,表列数
print "Work Sheet Titile:" ,ws.title
print "Work Sheet Rows:" ,ws.get_highest_row()
print "Work Sheet Cols:" ,ws.get_highest_column()
# 获取读入的excel表格的有多少行,有多少列
row_num=ws.get_highest_row()
col_num=ws.get_highest_column()
print "row_num: ",row_num," col_num: ",col_num
# 建立存储数据的字典
data_dic = {}
sign=1
# 把数据存到字典中
for row in ws.rows:
temp_list=[]
# print "row",row
for cell in row:
print cell.value,
temp_list.append(cell.value)
print ""
data_dic[sign]=temp_list
sign+=1
print data_dic
return data_dic
"""
function:
读出*.xlsx中的每一条记录,把它保存在data_dic中返回
Param:
records: 要保存的,一个包含每一条记录的list
save_excel_name: 保存为的文件名
head_row_stu_arrive_star:
Return:
data_dic: 返回的记录的dict
"""
def write_to_excel_with_openpyxl(self,records,head_row,save_excel_name="save.xlsx"):
# 新建一个workbook
wb = Workbook()
# 新建一个excelWriter
ew = ExcelWriter(workbook=wb)
# 设置文件输出路径与名称
dest_filename = save_excel_name.decode('utf-8')
# 第一个sheet是ws
ws = wb.worksheets[0]
# 设置ws的名称
ws.title = "range names"
# 写第一行,标题行
for h_x in range(1,len(head_row)+1):
h_col=get_column_letter(h_x)
#print h_col
ws.cell('%s%s' % (h_col, 1)).value = '%s' % (head_row[h_x-1])
# 写第二行及其以后的那些行
i = 2
for record in records:
record_list=str(record).strip().split("\t")
for x in range(1,len(record_list)+1):
col = get_column_letter(x)
ws.cell('%s%s' % (col, i)).value = '%s' % (record_list[x-1].decode('utf-8'))
i += 1
# 写文件
ew.save(filename=dest_filename)
"""
function:
测试输出Excel内容
读出Excel文件
Param:
excel_name: 要读出的Excel文件名
Return:
无
"""
def read_excel(self,excel_name):
workbook=xlrd.open_workbook(excel_name)
print workbook.sheet_names()
# 获取所有sheet
print workbook.sheet_names() # [u'sheet1', u'sheet2']
sheet2_name = workbook.sheet_names()[1]
# 根据sheet索引或者名称获取sheet内容
sheet2 = workbook.sheet_by_index(1) # sheet索引从0开始
sheet2 = workbook.sheet_by_name('Sheet1')
# sheet的名称,行数,列数
print sheet2.name,sheet2.nrows,sheet2.ncols
# 获取整行和整列的值(数组)
rows = sheet2.row_values(3) # 获取第四行内容
cols = sheet2.col_values(2) # 获取第三列内容
print rows
print cols
# 获取单元格内容
print sheet2.cell(1,0).value
print sheet2.cell_value(1,0)
print sheet2.row(1)[0].value
# 获取单元格内容的数据类型
print sheet2.cell(1,0).ctype
# 通过名称获取
return workbook.sheet_by_name(u'Sheet1')
"""
function:
设置单元格样式
Param:
name: 字体名字
height: 字体高度
bold: 是否大写
Return:
style: 返回设置好的格式对象
"""
def set_style(self,name,height,bold=False):
style = xlwt.XFStyle() # 初始化样式
font = xlwt.Font() # 为样式创建字体
font.name = name # 'Times New Roman'
font.bold = bold
font.color_index = 4
font.height = height
borders= xlwt.Borders()
borders.left= 6
borders.right= 6
borders.top= 6
borders.bottom= 6
style.font = font
style.borders = borders
return style
"""
function:
按照 设置单元格样式 把计算结果由txt转变为Excel存储
Param:
dataset:要保存的结果数据,list存储
Return:
将结果保存为 excel对象中
"""
def write_to_excel(self, dataset,save_excel_name,head_row):
f = xlwt.Workbook() # 创建工作簿
# 创建第一个sheet:
# sheet1
count=1
sheet1 = f.add_sheet(u'sheet1', cell_overwrite_ok=True) # 创建sheet
# 首行标题:
for p in range(len(head_row)):
sheet1.write(0,p,head_row[p],self.set_style('Times New Roman',250,True))
default=self.set_style('Times New Roman',200,False) # define style out the loop will work
for line in dataset:
row_list=str(line).strip("\n").split("\t")
for pp in range(len(str(line).strip("\n").split("\t"))):
sheet1.write(count,pp,row_list[pp].decode('utf-8'),default)
count+=1
f.save(save_excel_name) # 保存文件
def run_main_save_to_excel_with_openpyxl(self):
print "测试读写2007及以后的excel文件xlsx,以方便写入文件更多数据"
print "1. 把txt文件读入到内存中,以list对象存储"
dataset_list=self.read_from_file("test_excel.txt")
'''test use openpyxl to handle EXCEL 2007'''
print "2. 把文件写入到Excel表格中"
head_row_label=self.head_row_labels
save_name="test_openpyxl.xlsx"
self.write_to_excel_with_openpyxl(dataset_list,head_row_label,save_name)
print "3. 执行完毕,由txt格式文件保存为Excel文件的任务"
def run_main_save_to_excel_with_xlwt(self):
print " 4. 把txt文件读入到内存中,以list对象存储"
dataset_list=self.read_from_file("test_excel.txt")
'''test use xlwt to handle EXCEL 97-2003'''
print " 5. 把文件写入到Excel表格中"
head_row_label=self.head_row_labels
save_name="test_xlwt.xls"
self.write_to_excel_with_openpyxl(dataset_list,head_row_label,save_name)
print "6. 执行完毕,由txt格式文件保存为Excel文件的任务"
if __name__ == '__main__':
print "create handle Excel Object"
obj_handle_excel=HandleExcel()
# 分别使用openpyxl和xlwt将数据写入文件
obj_handle_excel.run_main_save_to_excel_with_openpyxl()
obj_handle_excel.run_main_save_to_excel_with_xlwt()
'''测试读出文件,注意openpyxl不可以读取xls的文件,xlrd不可以读取xlsx格式的文件'''
#obj_handle_excel.read_excel_with_openpyxl("testexcel2003.xls") # 错误写法
#obj_handle_excel.read_excel_with_openpyxl("testexcel2003.xls") # 错误写法
obj_handle_excel.read_excel("testexcel2003.xls")
obj_handle_excel.read_excel_with_openpyxl("testexcel2007.xlsx")
以上这篇使用python将大量数据导出到Excel中的小技巧分享就是小编分享给大家的全部内容了.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26