
大数据迁移的五大陷阱和风险
计算机系统之间的数据传输或存储格式从来就不是一个轻松的任务,特别是当它涉及结构化和非结构化的数据。
"复杂的数据迁移工作意味着超负荷运行和延迟都是很长常见的",Arvind Singh(以下简称辛格),芝加哥一家企业的数据解决方案提供商的联合创始人兼CEO表达了以上观点。
在《信息周刊》的一次电话采访中,Arvind Singh概述了10个常见的数据迁移问题,其中包括五个陷阱和五个风险,以此警告企业应该竭力避免。
大数据迁移的五大陷阱
陷阱#1:未能吸引业务线和业务用户开始。
当公司合并多个系统整合到一个--通常发生在兼并后--他们需要从确定正确的商业用途开始。
你需要确定谁知道和理解业务数据,"辛格说。
"谁是你业务的专家?这当然不是IT或系统集成商。"
换句话说,把那些数据使用精英搬进迁移项目。
毕竟,只有他们才能将那些操作系统玩转一旦上线。
陷阱#2:没有数据管理策略和组织结构。
"你已经将系统A的数据移动到系统B,但谁拥有管理结构?谁有权利在系统中创建、批准、编辑或删除数据?"辛格问。
还有一些问题必须解决:你设置了数据管理了吗?有一个业务流程来管理数据周期吗?另外,你有数据管理员在公司吗?
陷阱#3:在原始系统数据质量差。
公司经常意识不到一个"原有评估"是至关重要的数据迁移工作铺垫。
"了解原始系统里的数据的质量是一个巨大的陷阱,但企业常常不愿意花足够的时间,"辛格说。
必须要考虑的问题:现有的数据支持新用户吗?它缺少什么?你打算怎么做,你现在不能够做什么?
一个详细的评估让企业能够更容易地估计需要的工作量来成功地迁移原始数据。
陷阱#4:忽略验证和定义业务规则。
你公司的业务和验证规则可能不是最新的。
"难以让人相信一个公司在达成业务规则时花了多短的时间,更不用说确保数据符合业务规则,"辛格说。
"换句话说,你认为你有一个业务规则,但是你的现有数据是否匹配,细致,或遵循这个规定?"
此外,审计人员需要确保数据从原始系统到新的系统是有效的,特别是当这个迁移涉及关键信息,如金融、库存、和就业数据。
陷阱#5:未能验证和测试数据迁移过程。
不要以为这是最后一步了。
你绝对绝对要确保在整个过程中你一直在验证和测试,"辛格说。
必须要考虑的问题:你打算怎样测试数据?谁将测试和评估? 谁将签署它吗?以及谁将是数据的最终消费者?
“这一过程必须贯穿项目的始终,但不幸的是公司通常"不花足够的时间校准数据的测试和验证”辛格说。
大数据迁移的五大风险
风险#1:被委托进行数据迁移项目的员工缺乏实战经验。
一个公司的员工可能非常擅长他们所做的事,但这并不意味着他们是在数据管理、迁移和治理是专家。
"他们是数据的创作者和消费者,但是他们并不是完全熟练运用工具、过程、服务、模板和加速器,"辛格说。
风险#2:你的团队太依赖工具的开发工作。
这个问题往往是导致缺乏经验的员工。一个数据迁移项目通常是IT部门的事,但可能并没被专业训练过。迁移工具使用不当最终会迁移了错误数据。"这是类似于把垃圾传来传去,"辛格说。
你的目标,当然是快速、可靠地传输数据。重要的是你如何运用数据迁移工具,和"你搭配的有什么样的加速器和模板,"辛格说。
风险#3:交叉对象依赖性。
"我无法告诉你我有多少次坐在会议上,(客户)说,"我们刚刚发现了一个全新的资料来源,我们甚至都不知道自己需要移动的',"辛格说。
交叉对象依赖常常很晚才被发现。一个复杂的项目可能会有60、70、甚至80个不同的数据对象中来自一百个左右的应用程序。
"当我们与客户谈生意时,我们寻找丢失的数据块,或者相关数据,"辛格说。
事实上,交叉对象依赖性--并在后来发现新的数据来源的过程--是主要的风险,可以打乱你的迁移的时间表。
风险#4:试图在一个大的上传之后去上线。
这是一个灾难,辛格说,因为你在假设一切都是完美的,你将能够简单地点击一个按钮,和所有的数据将负载得完美无瑕。 "这是个很大的风险,"他说。"你需要一个项目时间轴,复杂的,长期的测试负载的道路。"
风险#5:预算超支由于不适当的范围或准备工作的欠缺。
这经常发生在,当一个组织认为它的系统集成商(SI)会照顾到这些细节。
"大多数系统集成商通常不处理数据只是说,'我将连接管道使原始数据移动到一个目标系统',"辛格说。
"在现实阶段,我们可以调用到数据迁移项目,"他说,"人们说:'看,数据没有捆绑在一起,我们无法进行用户测试。'"
这个问题,当然,会导致成本超支和毁坏的时间表。
如今IT
面临的最大挑战之一,是风险评估。风险的度量和影响评估不是一门确切的科学,而是有工具、过程和原理,可用于确保组织很好地被保护,高级管理层消息灵通。在我们的Measuring
Risk: A Security Pro's
Guide测量风险中:一个安全专业人员的指导报告中,我们推荐工具来评估安全风险和提供一些想法供有效地将结果数据投入到业务中去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10