京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言-批量读取数据文件以及提取字符串中的数字
#第一部分
#先将当前文件夹下的所有以csv结尾的文件名读进来
filelist <- list.files(pattern=".*.csv")
#文件个数
m<-length(filelist)
#按照文件名逐个读入数据,得到数据列表
datalist <- lapply(filelist, function(x) read.csv(x,header=F,stringsAsFactors=F))
#第二部分
library(stringr)#没装的请先安装
cha1<-c("a1","b23","c4","d56","e","f4")#这是6个字符串,每个字符串里面都包含数字,考虑如何把数字提取出来
col1<-str_extract_all(cha1,"\\d")#得到字符串列表,每个元素对应每个字符串的数字,但是不是你想象的那样
#具体形式是这样的:如23,得到的是"2" "3",所以该怎样把它变成我们想要的数字23是个问题,解决方法如下:
i<-1
while(i<=length(col1)){
if(length(col1[[i]])==0) col1<-col1[-i] else i<-i+1#这一步是考虑把没有数字的字符串对应的列表元素删掉,比如说"e"
}
col11<-numeric(length(col1))
for(i in 1:length(col1)){
l1<-length(col1[[i]])
l11<-c()
for(j in 1:l1)
l11<-paste(l11,col1[[i]][j],sep="")#将列表的每个元素连接起来,比如"2" "3"就变成了字符串"23"
col11[i]<-as.numeric(l11)#再将链接好的字符串进行数值化
}
col11<-col11[!duplicated(col11)]#有的数字在处理之后,即将字母去掉之后会有所重复,这步是向量去重处理(不需要去重的请忽略哈)
#补充两个个函数:
#1.删除字符串中的特定字符
gsub(a,b,c):将字符串c中的a字符用b字符进行替换,例如:
gsub(" ","","Lin hai")#这样可以删除字符串中的空格
#2.读取excel数据时指定行和列进行读取
library(data.table)
data1 <- fread("数据.csv", skip=1, nrows=100, select=c(1:50),data.table=F,header=F) #读取前五十列,前一百行
#其中skip是起始行,nrows是终止行,select是所要读取的列号(也可以写成列名,如select=c("X1", "X2"),表示读取列名为X1,X2的变量)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12