
数据挖掘的方法及实施
作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:
传统统计方法:①抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。②多元统计分析:因子分析,聚类分析等。③统计预测方法,如回归分析,时间序列分析等。
可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。
决策树:利用一系列规则划分,建立树状图,可用于分类和预测。常用的算法有CART、CHAID、ID3、C4.5、C5.0等。
神经网络:模拟人的神经元功能,经过输入层,隐藏层,输出层等,对数据进行调整,计算,最后得到结果,用于分类和回归。
遗传算法:基于自然进化理论,模拟基因联合、突变、选择等过程的一种优化技术。
关联规则挖掘算法:关联规则是描述数据之间存在关系的规则,形式为“A1∧A2∧…An→B1∧B2∧…Bn”。一般分为两个步骤:①求出大数据项集。②用大数据项集产生关联规则。
除了上述的常用方法外,还有粗集方法,模糊集合方法,Bayesian Belief Netords,最邻近算法(k-nearest neighbors method(KNN))等。
数据挖掘的实施流程
前面我们讨论了数据挖掘的定义,功能和方法,现在关键的问题是如何实施,其一般的数据挖掘流程如下:
问题理解和提出→数据准备→数据整理→建立模型→评价和解释
问题理解和提出:在开始数据挖掘之前最基础的就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标有明确的定义。
数据准备:获取原始的数据,并从中抽取一定数量的子集,建立数据挖掘库,其中一个问题是如果企业原来的数据仓库满足数据挖掘的要求,就可以将数据仓库作为数据挖掘库。
数据整理:由于数据可能是不完全的、有噪声的、随机的,有复杂的数掘结构,就要对数据进行初步的整理,清洗不完全的数据,做初步的描述分析,选择与数据挖掘有关的变量,或者转变变量。
建立模型:根据数据挖掘的目标和数据的特征,选择合适的模型。
评价和解释:对数据挖掘的结果进行评价,选择最优的模型,作出评价,运用于实际问题,并且要和专业知识结合对结果进行解释。
以上的流程不是一次完成的,可能其中某些步骤或者全部要反复进行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14