
Python实现文件信息进行合并实例代码
这篇文章主要介绍了Python实现文件信息进行合并实例代码,具有一定借鉴价值,需要的朋友可以参考下
将电话簿TeleAddressBook.txt和电子邮件EmailAddressBook.txt合并为一个完整的AddressBook.txt
def main():
ftele1=open("d:\TeleAddressBook.txt","rb")
ftele2=open("d:\EmailAddressBook.txt","rb")
ftele1.readline()
ftele2.readline()
lines1=ftele1.readlines()
lines2=ftele2.readlines()
#建立空列表用于存储姓名电话Email
list1_name=[]
list1_tele=[]
list2_name=[]
list2_email=[]
#获取TeleAddressBook
for line in lines1:
elements=line.split()
list1_name.append(str(elements[0].decode("gbk")))
list1_tele.append(str(elements[1].decode("gbk")))
#获取EmailAddressBook
for line in lines2:
elements=line.split()
list2_name.append(str(elements[0].decode("gbk")))
list2_email.append(str(elements[1].decode("gbk")))
lines=[]
lines.append("姓名\t电话\t\t邮箱\n")
#按索引方式遍历姓名列表
for i in range(len(list1_name)):
s=''
if list1_name[i] in list2_name:
j=list2_name.index(list1_name[i])
s="\t".join([list1_name[i],list1_tele[i],list2_email[j]])
s+="\n"
else:
s="\t".join([list1_name[i],list1_tele[i],str("-----------")])
s+="\n"
lines.append(s)
for i in range(len(list2_name)):
s=""
if list2_name[i] not in list1_name:
s="\t".join([list2_name[i],str("-----------"),list2_email[i]])
s+="\n"
lines.append(s)
#将新生成的合并数据写入新的文件中
ftele3=open("d:\AddressBook.txt","w")
ftele3.writelines(lines)
#关闭文件
ftele3.close()
ftele1.close()
ftele2.close()
print("The addressBooks are merged!")
main()
演示结果:
总结
以上就是本文关于Python实现文件信息进行合并实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10