
最近自己对机器学习比较感兴趣,做个笔记,还请大牛不喜轻喷,多多指教。
朴素贝叶斯分类基于概率论中的贝叶斯原理:
P(A|B) = P(B|A)*P(A)/P(B)
所谓朴素即是特征属性之间相互独立的对分类结果发生影响。
所以对应的概率公式可改写为P(c|x) = P(x|c)|p(c) / P(x)
其中:
P(c) 是类‘先验概率’
P(x|c) 是样本x对于类标记c的类条件概率(或称似然)
P(x)叫做证据因子
由于朴素贝叶斯假定所有特征属性独立,所以
P(x|c)= P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c)
P(x) = P(x1) * P(x2) * … * P(xn)
所以
P(c|x) = P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c) * P(c) /
p(x)。 因为 P(c) / p(x)是固定值,所以我们一般只需要计算P(x|c),找出最大似然即可
Ps:
对于离散属性而言,P(x1|c) = 训练集中属性为x1且分类为c的数目|训练集中分类c的数目
对于离散属性而言,一般假定其概率分布为高斯分布
取个例1:
症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 教师 感冒
头痛 教师 脑震荡
现在又来了是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
由上可知
求P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒) P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏)
P(建筑工人|感冒) = 1/3
P(打喷嚏|感冒) = 2/3
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 = 1/3
P(打喷嚏) = 3/6 = 1/2
所以
P(感冒|打喷嚏*建筑工人) = (1/3 * 2/3 * 1/2 ) / (1/3 * 1/2) = 2/3
再取个例2(来自机器学习(周志华)):
我们要求一个:
根据朴素贝叶斯定理:
我们有
P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =
P(色泽=青绿|好瓜=是) * P(根蒂=蜷缩|好瓜=是) * P(敲声=浊响|好瓜=是) * P(纹理=清晰|好瓜=是) *
P(脐部=凹陷|好瓜=是) * P(触感=硬滑|好瓜=是) * P(密度=0.697|好瓜=是) * P(含糖率=0.46|好瓜=是) *
P(好瓜=是) / (P(色泽=青绿) * P(根蒂=蜷缩) * P(敲声=浊响) * P(纹理=清晰) * P(脐部=凹陷)
* P(触感=硬滑) * P(密度=0.697) * P(含糖率=0.46))
P(好瓜=是) = 8/17
P(色泽=青绿|好瓜=是) = 3/8
…
(好瓜=是的瓜密度均值为0.574, 方差 = 0.129)
P(色泽=青绿|好瓜=是) = exp(-(0.697-0.574)^2 / 2*0.129)) / sqrt((2*π)*0.129) ≈ 1.959
…
结果P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) = 0.038
同理
P(好瓜=否|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =0.000068
所以分类到好瓜中。
特别的,如果样本中有,但是训练集中没有,这样就有可能导致分类不合理。
例如在例1 中 如果样本中出现职业一个打喷嚏的学生,那么最后算出来的结果,P(感冒|打喷嚏*学生) = 0,很明显是不对的。
拉普拉斯修正修正原理很简单:设Ni对于分类为c第i个特征属性的可能取到的类别数目
,那么:
P(xi|c) =( |Dc,xi|+1) / (|Dc|+Ni )
其中 |Dc,xi| 表示训练集中分类为c的特征属性为xi的数目, |Dc| 表示训练集中分类为c的数目。
在例1 经过修正后
P(建筑工人|感冒) = (1+1)/(3+4) = 2/7
P(打喷嚏|感冒) = (2+1)/(3+2) =3/5
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 =1/3
P(打喷嚏) = 3/6 = 1/2
P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒)P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏) = (2/7 * 3/71/2) / (1/31/2) = 2/35
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11