
最近自己对机器学习比较感兴趣,做个笔记,还请大牛不喜轻喷,多多指教。
朴素贝叶斯分类基于概率论中的贝叶斯原理:
P(A|B) = P(B|A)*P(A)/P(B)
所谓朴素即是特征属性之间相互独立的对分类结果发生影响。
所以对应的概率公式可改写为P(c|x) = P(x|c)|p(c) / P(x)
其中:
P(c) 是类‘先验概率’
P(x|c) 是样本x对于类标记c的类条件概率(或称似然)
P(x)叫做证据因子
由于朴素贝叶斯假定所有特征属性独立,所以
P(x|c)= P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c)
P(x) = P(x1) * P(x2) * … * P(xn)
所以
P(c|x) = P(x1,x2,…xn|c) = P(x1|c)P(x2|c) …P(xn|c) * P(c) /
p(x)。 因为 P(c) / p(x)是固定值,所以我们一般只需要计算P(x|c),找出最大似然即可
Ps:
对于离散属性而言,P(x1|c) = 训练集中属性为x1且分类为c的数目|训练集中分类c的数目
对于离散属性而言,一般假定其概率分布为高斯分布
取个例1:
症状 职业 疾病
打喷嚏 护士 感冒
打喷嚏 农夫 过敏
头痛 建筑工人 脑震荡
头痛 建筑工人 感冒
打喷嚏 教师 感冒
头痛 教师 脑震荡
现在又来了是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?
由上可知
求P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒) P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏)
P(建筑工人|感冒) = 1/3
P(打喷嚏|感冒) = 2/3
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 = 1/3
P(打喷嚏) = 3/6 = 1/2
所以
P(感冒|打喷嚏*建筑工人) = (1/3 * 2/3 * 1/2 ) / (1/3 * 1/2) = 2/3
再取个例2(来自机器学习(周志华)):
我们要求一个:
根据朴素贝叶斯定理:
我们有
P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =
P(色泽=青绿|好瓜=是) * P(根蒂=蜷缩|好瓜=是) * P(敲声=浊响|好瓜=是) * P(纹理=清晰|好瓜=是) *
P(脐部=凹陷|好瓜=是) * P(触感=硬滑|好瓜=是) * P(密度=0.697|好瓜=是) * P(含糖率=0.46|好瓜=是) *
P(好瓜=是) / (P(色泽=青绿) * P(根蒂=蜷缩) * P(敲声=浊响) * P(纹理=清晰) * P(脐部=凹陷)
* P(触感=硬滑) * P(密度=0.697) * P(含糖率=0.46))
P(好瓜=是) = 8/17
P(色泽=青绿|好瓜=是) = 3/8
…
(好瓜=是的瓜密度均值为0.574, 方差 = 0.129)
P(色泽=青绿|好瓜=是) = exp(-(0.697-0.574)^2 / 2*0.129)) / sqrt((2*π)*0.129) ≈ 1.959
…
结果P(好瓜=是|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) = 0.038
同理
P(好瓜=否|色泽=青绿,根蒂=蜷缩,敲声=浊响,纹理=清晰,脐部=凹陷,触感=硬滑,密度=0.697,含糖率=0.46) =0.000068
所以分类到好瓜中。
特别的,如果样本中有,但是训练集中没有,这样就有可能导致分类不合理。
例如在例1 中 如果样本中出现职业一个打喷嚏的学生,那么最后算出来的结果,P(感冒|打喷嚏*学生) = 0,很明显是不对的。
拉普拉斯修正修正原理很简单:设Ni对于分类为c第i个特征属性的可能取到的类别数目
,那么:
P(xi|c) =( |Dc,xi|+1) / (|Dc|+Ni )
其中 |Dc,xi| 表示训练集中分类为c的特征属性为xi的数目, |Dc| 表示训练集中分类为c的数目。
在例1 经过修正后
P(建筑工人|感冒) = (1+1)/(3+4) = 2/7
P(打喷嚏|感冒) = (2+1)/(3+2) =3/5
P(感冒) = 3/6 = 1/2
P(建筑工人) = 2/6 =1/3
P(打喷嚏) = 3/6 = 1/2
P(感冒|打喷嚏建筑工人) = P(建筑工人|感冒)P(打喷嚏|感冒) * P(感冒) / P(建筑工人) * P(打喷嚏) = (2/7 * 3/71/2) / (1/31/2) = 2/35
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10