京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据叩开智能制造之门 引领企业大步迈向卓越
“数据是新的石油,是本世纪最为珍贵的财产”,谁掌控了数据,谁就掌控了主动,谁就能够在万象更新、瞬息万变的新时代“运筹帷幄、决胜千里”,我们已经进入了一个前所未有、无法回避的大数据时代,导航适时避阻、广告精准推送、案件快速侦破、车辆无人驾驶……无一不是数据在其中大显神通。
车辆无人驾驶
在工业4.0和中国制造2025背景下,企业内部数据的广泛获取和有效利用也正在变得愈加迫切、重要,数据驱动决策、数据驱动流程、数据驱动产品、数据驱动业务,数据已经成为企业赖以生存发展和难以割舍的一部分,大数据推动企业进步、促进企业发展,驱动着企业快速蜕变和未来制胜。
互联网、物联网、大数据、云计算使我们具备了掌控数据、利用数据的能力,但实施的基础是组建网络和采集数据,否则就是“空谈”或不接地气的“空中楼阁”。自动化、信息化、网络化、智能化是企业智能制造的四个层次,唯有实施深度的两化融合,使智能装备、智能感知、工业软件能够通过工业以太网深度交融和高度协同,人、机、系统实现信息共享、互联互通,才能使系统具备较强的数据采集与分析处理能力,才能真正指导企业实现智能化高效运营,才能真正引领企业超凡脱俗、做大做强,使企业具备迈向高端、走向卓越的潜能,否则智能制造可能只是一种空响的口号而已,犹如“雨后彩虹”,来也匆匆、去也匆匆,或者劳民伤财、徒有虚名。
大数据
一个企业如果获取数据信息手段匮乏,并且信息零散、杂乱,难以实现对数据的全面掌控和轻松驾驭,同时数据驱动的目标不清晰,那么推进智能制造工作所面临的阻力肯定也就非常艰巨,因此要达到系统的智能化,必须要从获取有效的数据开始,首先设备要达到必备的数控化率,并且所要采集的数据要有相应的传感或感知系统,然后就是运用网络化和信息化技术将设备组网,以及对数据进行采集归纳和智能分析。
生产线的设备组网可以通过数据采集与工业软件的智能算法,使系统具备自动输出设备开动率、有效利用率、故障预警信息、维护保养提醒等功能,可及时发现车间现场所存在的短板、瓶颈、问题工序,用于指导和改善生产运营综合管理水平,并且可以指导生产资源的最优化配置。同时可以对关特工序、质控点的工艺参数进行全程监控,并且对变化趋势进行直观分析,当接近极限值或超出工艺控制范围时,提供声光预警或APP推送信息以便及时进行人工干预,确保生产线质量保障能力达到可控、稳定状态。
汽车制造生产线的AVI系统已经成为行业的标准配置,通过RFID载码体技术或二维码扫描技术,对车辆信息进行适时跟踪,AVI系统所获取的数据对于生产线车辆的全程监视、计划调度、节拍平衡分析具有举足轻重的作用。并且可以在中控室通过实时呈现的全景动态画面,监视各工序/工位的过车情况及车辆的在线状态,可自动输出各工序适时完工计划及快速查询车辆的具体位置,为物料配送提供精准的车辆状态信息,便于提前储备物料,也可以实现车辆在缓存区的自动排序及自动转运。更为关键的是,通过统计各车型、各工序、各时段的生产情况,便于快速曝露和精准分析车间瓶颈问题,有利于优化生产资源配置。
数据是如今最宝贵的资源,数据所扮演的角色日渐重要,数据的高效利用对企业所带来的价值也是不可估量的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01