
引自百度:决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程
决策树的算法原理:
(1)通过把实例从根节点开始进行排列到某个叶子节点来进行分类的。
(2)叶子节点即为实例所属的分类的,树上的每个节点说明了实例的属性。
(3)树的生成,开始的所有数据都在根节点上,然后根据你所设定的标准进行分类,用不同的测试属性递归进行数据分析。
决策树的实现主要思路如下:
(1)先计算整体类别的熵
(2)计算每个特征将训练数据集分割成的每个子集的熵,并将这个熵乘以每个子集相对于这个训练集的频率,最后将这些乘积累加,就会得到一个个特征对应的信息增益。
(3)选择信息增益最大的作为最优特征分割训练数据集
(4)递归上述过程
(5)递归结束条件:训练集的所有实例属于同一类;或者所有特征已经使用完毕。
代码如下:
[python] view plain copy
#!/usr/bin/python
#coding=utf-8
import operator
import math
#定义训练数据集
def createDataSet():
#用书上图8.2的数据
dataSet = [
['youth', 'no', 'no', 'no'],
['youth', 'yes', 'no', 'yes'],
['youth', 'yes', 'yes', 'yes'],
['middle_aged', 'no', 'no', 'no'],
['middle_aged', 'no', 'yes', 'no'],
['senior', 'no', 'excellent', 'yes'],
['senior', 'no', 'fair', 'no']
]
labels = ['age', 'student', 'credit_rating']
return dataSet, labels
#实现熵的计算
def calShannonEnt(dataSet):
numEntries = len(dataSet)
labelCounts = {}
for featVect in dataSet:
currentLabel = featVect[-1]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key]) / numEntries
shannonEnt -= prob * math.log(prob, 2)
return shannonEnt
#分割训练数据集
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
#一个确定“最好地”划分数据元组为个体类的分裂准则的过程
def Attribute_selection_method(dataSet):
numFeatures = len(dataSet[0]) - 1
baseEntropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueValue = set(featList)
newEntropy = 0.0
for value in uniqueValue:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / len(dataSet)
newEntropy += prob * calShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy
if infoGain > bestInfoGain:
bestInfoGain = infoGain
bestFeature = i
return bestFeature
#采用majorityvote策略,选择当前训练集中实例数最大的类
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
#创建决策树
def Generate_decision_tree(dataSet, labels):
classList = [example[-1] for example in dataSet]
# 训练集所有实例属于同一类
if classList.count(classList[0]) == len(classList):
return classList[0]
# 训练集的所有特征使用完毕,当前无特征可用
if len(dataSet[0]) == 1:
return majorityCnt(classList)
bestFeat = Attribute_selection_method(dataSet)
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel: {}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = Generate_decision_tree(splitDataSet(dataSet, bestFeat, value), subLabels)
return myTree
def main():
print ' ____ _ _ _____ '
print ' | _ \ ___ ___(_)___(_) ___ _ _|_ _| __ ___ ___ '
print ''''' | | | |/ _ \/ __| / __| |/ _ \| '_ \| || '__/ _ \/ _ \\'''
print ' | |_| | __/ (__| \__ \ | (_) | | | | || | | __/ __/'
print ' |____/ \___|\___|_|___/_|\___/|_| |_|_||_| \___|\___|决策树'
print
myDat, labels = createDataSet()
myTree = Generate_decision_tree(myDat, labels)
print '[*]生成的决策树:\n',myTree
if __name__ == '__main__':
main()
这里的数据也是使用书上的(《数据挖掘概念与技术 第三版》)。
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11