
别以为你是技术开发人员就可以不会大数据
要处理大数据,开发人员需要了解他们正在处理的业务问题,以及部署架构和数据。为了了解大数据,我们采访了21家公司的22位高管,他们正在帮助客户管理和优化他们的数据,以推动业务价值。我们的问题是:开发者在大数据项目上需要什么技能?以下是他们的的答案。
了解业务问题
1. 从数据中心的角度来看工作。你有什么数据、你想知道什么、你要怎么填补空白来解决问题?
2. 开发人员需要各种技能来处理大数据项目,其中包括以下三项至关重要的技能:A. 清楚地了解公司内部的业务目标范围,以及这些技术如何与各种技术保持一致。B. 在应用程序的中,开发人员需要了解他们正在处理的数据集的商业价值。C. 开发人员作为一个组织的一部分,需要有能够构建和管理一个应用程序的能力。
3. 了解用例并找出最佳解决方案堆栈。培养核心基础人才。理解数学结构、框架和模型。了解业务应用程序 ---如何将信息用于业务。有许多工具可以直观地减少初始难度。正如上述,技能的完美结合涉及统计、数学知识、数据建模经验、编程经验以及商业领域的敏锐度。尽管找到具有完美技能组合的个人(一名真正的数据科学家)是相当难得的,但某些工具集和系统可以减轻对编程经验的需求,帮助数据建模部分,甚至减少对深入了解预测背后的数学模型。
部署体系结构
1. 未来是AI / ML的,同时也别忘了微服务。在云中与AI / ML工具结合起来,这需要不同的、更大的愿景。
2. 了解云、微服务、本地分布和安全性。
3. 了解流行的开源系统的架构,跟上趋势。
4. 系统架构、软件工程、机器学习以及高级分析。
数据
1. 虽然开发人员掌握了开发流程,但为了扩展平台将会帮助理解Kafka。你不必手动完成所有的编码工作,将会有其他工具来消除连接性问题。
2. 利用数据结构来简化流程。使用数据作为容器和微服务的一般资源。智能制造更有针对性和反应性的过程。看质量问题和根本原因。让工作更容易,这样他们就能做出更多的贡献。
3. 集成资源来构建应用程序和推荐引擎。补充软件堆栈、ML库和计算资源。结构化数据,使其易于使用。
4. 拥抱非关系数据模型,如文档和半结构化。为了分析的目的,经常需要对数据进行非规范化处理。
5. 理解结构、维度和变量的基本数据词汇。了解一个给定的变量可以做什么样的分析。
6. 如何处理大规模的数据。多用户的并发性应用程序开发人员可以快速获取语言了解数据生态系统的工作原理。
7. 开发人员需要使用编程语言、概率和统计,应用数学和算法来获得机器学习的上升趋势。他们还需要了解数据的上下文,最终用户将如何使用数据,以及如何重用数据。他们需要考虑分布式计算和架构,将数据管理恰当地分离到不同的区域,以保持大数据架构的组织性,敏捷性和安全性。DevOps原则也需要被应用到。通过参与整个软件交付流程,数据专家可以帮助其他团队了解软件在生产中面临的数据挑战类型。
8. 数据工程和数据科学是一个大的分支。虽然对数据科学的基本知识只需要有所掌握,但对不同数据技术的深入了解却是必要的。尽管NoSQL很受欢迎,但SQL仍然是查询数据的标准。开发人员需要了解不同的部署选项——云本地、容器和流行的部署选项。对数据库和系统概念(如一致性保证、事务边界、系统体系结构、保证和职责等)的良好理解将帮助开发人员了解环境、对技术进行分类、并识别他们应该研究的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28