
数据工程师,解救混乱大数据中的数据科学家
最近《福布斯》发表了一篇关于对2018“人工智能、大数据和分析”10大预测的文章中指出,数据工程师即将取代数据科学家的角色,成为炙手可热的新一代职位。Gil Press写道,Indeed.com上有13%的岗位是关于数据工程师的,而数据科学家所占的比例还不到1%。
有趣的是,笔者在LinkedIn上查到如亚马逊和Facebook这样的领先数据驱动公司发布的数据工程师职位描述。具备数据抽取、转换、加载(ETL)流程和数据管道建设专业知识的全面了解,丰富的数据仓库技能,是理想数据工程师的必备和基本素质。
什么是数据工程师?
如果建筑工程涉及到建筑、道路和轨道等物理基础设施的设计、规划、建设和管理,数据工程也要应用同样复杂的数据。
数据工程师计划、设计、构建和维护一个可靠的体系架构,以确保稳定的清洁和结构化数据流,以便进行进一步分析,并适用于生产环境。
数据工程之所以越来越引人注目,是因为企业被大量非结构化的有价值的商业信息数据所淹没了。
随着数据科学家和公民数据科学的统计和编程能力开始激增,管理和维护大量的数据成了他们共同的痛点。分析和构建模型的数据科学家,近80%的时间都花费在查找和清理数据。
数据工程师通过了解企业所需的数据、识别相关的新数据源、提取可用的格式数据,确保数据不出错并将数据加载到数据科学家和分析师的工作中,从而实现对数据的救援计划。
数据工程师必备工具集
数据工程师的工作内容常常与数据架构师、数据库管理员和软件工程师的工作重叠,这意味着他们需要预先熟悉这些工作的内容。数据架构师或管理员只局限于数据基础架构的规划和维护的位置上,但从起源到最终分析展览的过程中,数据工程师都要参与在内。
因此,数据工程师的技能包括:
* 精通R或Python编程
* 强大的SQL技能
* 基于Hadoop的技术,如MapReduce、Hive和Pig
除上述以外,数据工程师还应为传统的ETL过程提供新的重新配置选项。在并行处理方法之后,为复制数据构建数据管道,将其转移到存储解决方案上,重新格式化和加入数据。
随着多条数据流水线开始出现,Airflow和Luigi等开源工作流管理工具可用于创建和监控数据流水线。因此,对这些工具的了解又是一个优势。数据工程师也可以使用机器学习来自动化数据管道流程。
数据准备 —— 主要标准
数据的清洁度和质量越好,建模的效果越好,这就是从训练模型中得出的见解。
Urthecast的数据工程师David Bianco解释说,数据工程师的最终目标是向需要的人提供干净、可用的数据。这种收集、清理、处理和整合数据的方法被称为数据准备或数据处理。
数据分析中的两个主要数据问题。
小(无)或大数据问题:数据工程师应该在公司内外寻找新的数据来源。没有足够的数据来源,分析师和数据科学家会很难建立培训模式。相反,大数据集也可能很难处理,而且“垃圾进,垃圾出”是数据科学中一个残酷的现实。
杂乱的数据问题:一旦确定了数据源,就需要对元数据进行编目和组织,定义数据提取方法。Airbnb的数据工程师Maxime Beauchemin把数据工程师称为数据仓库的“图书管理员”,他们把凌乱的数据梳理好。相互冲突的术语和不一致的数据会使整个流程变得拖沓。
尽管大多数数据看起来微不足道,但提炼和清洗后的数据却能产生大价值。
为数据工程师减轻数据准备压力
数据准备工作可能很乏味,但是如果正确使用了自动化和工具,将会节省不少时间。在R / Python编程方面的专业知识,有助于简化他们在自动化方面的工作。
数据冠层正在以前所未有的速度扩张,越来越有趣也越来越混乱。数据工程师的职责就是清理混乱的数据生态系统,为所有人提供一个健康的数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10