京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据工程师,解救混乱大数据中的数据科学家
最近《福布斯》发表了一篇关于对2018“人工智能、大数据和分析”10大预测的文章中指出,数据工程师即将取代数据科学家的角色,成为炙手可热的新一代职位。Gil Press写道,Indeed.com上有13%的岗位是关于数据工程师的,而数据科学家所占的比例还不到1%。
有趣的是,笔者在LinkedIn上查到如亚马逊和Facebook这样的领先数据驱动公司发布的数据工程师职位描述。具备数据抽取、转换、加载(ETL)流程和数据管道建设专业知识的全面了解,丰富的数据仓库技能,是理想数据工程师的必备和基本素质。
什么是数据工程师?
如果建筑工程涉及到建筑、道路和轨道等物理基础设施的设计、规划、建设和管理,数据工程也要应用同样复杂的数据。
数据工程师计划、设计、构建和维护一个可靠的体系架构,以确保稳定的清洁和结构化数据流,以便进行进一步分析,并适用于生产环境。
数据工程之所以越来越引人注目,是因为企业被大量非结构化的有价值的商业信息数据所淹没了。
随着数据科学家和公民数据科学的统计和编程能力开始激增,管理和维护大量的数据成了他们共同的痛点。分析和构建模型的数据科学家,近80%的时间都花费在查找和清理数据。
数据工程师通过了解企业所需的数据、识别相关的新数据源、提取可用的格式数据,确保数据不出错并将数据加载到数据科学家和分析师的工作中,从而实现对数据的救援计划。
数据工程师必备工具集
数据工程师的工作内容常常与数据架构师、数据库管理员和软件工程师的工作重叠,这意味着他们需要预先熟悉这些工作的内容。数据架构师或管理员只局限于数据基础架构的规划和维护的位置上,但从起源到最终分析展览的过程中,数据工程师都要参与在内。
因此,数据工程师的技能包括:
* 精通R或Python编程
* 强大的SQL技能
* 基于Hadoop的技术,如MapReduce、Hive和Pig
除上述以外,数据工程师还应为传统的ETL过程提供新的重新配置选项。在并行处理方法之后,为复制数据构建数据管道,将其转移到存储解决方案上,重新格式化和加入数据。
随着多条数据流水线开始出现,Airflow和Luigi等开源工作流管理工具可用于创建和监控数据流水线。因此,对这些工具的了解又是一个优势。数据工程师也可以使用机器学习来自动化数据管道流程。
数据准备 —— 主要标准
数据的清洁度和质量越好,建模的效果越好,这就是从训练模型中得出的见解。
Urthecast的数据工程师David Bianco解释说,数据工程师的最终目标是向需要的人提供干净、可用的数据。这种收集、清理、处理和整合数据的方法被称为数据准备或数据处理。
数据分析中的两个主要数据问题。
小(无)或大数据问题:数据工程师应该在公司内外寻找新的数据来源。没有足够的数据来源,分析师和数据科学家会很难建立培训模式。相反,大数据集也可能很难处理,而且“垃圾进,垃圾出”是数据科学中一个残酷的现实。
杂乱的数据问题:一旦确定了数据源,就需要对元数据进行编目和组织,定义数据提取方法。Airbnb的数据工程师Maxime Beauchemin把数据工程师称为数据仓库的“图书管理员”,他们把凌乱的数据梳理好。相互冲突的术语和不一致的数据会使整个流程变得拖沓。
尽管大多数数据看起来微不足道,但提炼和清洗后的数据却能产生大价值。
为数据工程师减轻数据准备压力
数据准备工作可能很乏味,但是如果正确使用了自动化和工具,将会节省不少时间。在R / Python编程方面的专业知识,有助于简化他们在自动化方面的工作。
数据冠层正在以前所未有的速度扩张,越来越有趣也越来越混乱。数据工程师的职责就是清理混乱的数据生态系统,为所有人提供一个健康的数据集。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27