
数据科学的5个常见误解,看完想走弯路都难
尽管大数据、机器学习和预测分析带来了巨大的好处,但数据科学对于各种规模的企业来说,仍然是一个的敏感话题。很多人不仅不愿意采用相关的系统和硬件,而且在转型时,在收集信息这一步上就落后了其他人。
美国的企业、组织和政府的混乱数据每年为美国经济带来高达3.1万亿美元的负担。更糟糕的是,14.9%的营销人员声称他们根本不知道什么是大数据。数据显示群众对大数据和数据科学方面知识匮乏。学习如何使用这些数据是这个行业的一部分,似乎同时也成了一个巨大的障碍。
你可能会问:关于数据科学的错误概念是什么?项目管理人员和业务经理需要注意什么?让我们一起仔细探讨一下。
1. 数据量决定准确性
如果打算开始收集大量信息,然后使用现代化的系统和工具来分析这些信息,那么这个观点这是需要马上消除的一个误解。大量的数据并不一定意味着高精度,也不意味着能从数据中获得更多的价值,某些数据本身就毫无价值。
在收集数据之后,应该通过一系列步骤对数据进行筛选。
1. 了解你需要分析哪些数据集,以及如何才能最完美的完成任务。
2. 从数据中提取有用的信息或可操作的见解。
3. 运用这些见解来完善流程。
4. 微调以上的流程,创建一个流畅的数字数据机器。
以上每一个步骤不仅需要您了解相关数据,并且需要了解如何使用这些数据,没有任何一个步骤与数据量有关。数据量不重要。重要的是如何利用数据,以及如何正确应用到您的业务中去。
2. 数据科学就是商业智能
商业智能和数据科学经常被混淆,那些不那么熟悉这个行业的人更是感到迷茫。它们并不是同义词。商业智能涉及数据,但更多的是关于组织的运营等。这个过程你需要回答诸如what、when、who和how等问题。数据科学是与预测分析相关。目标是收集足够的信息,以建立可识别的模式和见解。此外,数据科学更多的是与数据挖掘、统计和定量分析有关,对于预测建模、多变量测试和流程计划有着非常关键的作用。不要把数据科学和商业智能这两个概念混淆。
3.数据量决定一切
许多中小型企业认为大数据技术就一定需要大量的数据。事实并非如此,批量数据是目标,但是也不是说需要数百万的客户来提取见解。
IBM将数据科学定义为由四个基本的“V”组成 --- 数量、速度、品种和准确性。如果您可以把您的数据结构化到这些类别或概念中,对大数据分析很有价值。除了数量之外,当前数据的真实性,多样性和传入数据的速度都是有差别的。
4. 资质王牌人才和经验
深入观察任何一个职位董事会,会看到许多企业对统计学、机器学习甚至数学博士学位的数据科学家的渴求。
数据科学领域,人才和经验同样重要。实际上,拥有多年从事经验的人可能会比刚毕业的高学历学生有更高的声望。我们并不是在引导您如何选择员工,在数据行业,通过优先考虑人才和经验,能为企业抓更多的机会。
5. 数据科学家会写代码
虽然有很多数据科学家也了解编程,知道如何编写和使用计算机语言。景观如此,这并不意味着他们就是编程方面的专家。本质上他们只关注一两种技能,其中最相关的就是数据科学和分析,编码可能只是他们的附加技能。
数据科学并不神奇
很多外界人士都神话了数据科学,或者至少是在一些方面盲目崇拜这种形式的科学。数学、统计和分析工具这些都是必备的,但是数据科学更多的是一门艺术。提取现代企业和组织需要的有用信息,这既需要技巧,也需要人才,更需要经验。虽然机器学习和预测工具可以替代这些,但不能根本解决底层的需求。仍然需要实际的数据科学家来完成大量的工作。
在实际实施之前谨记这些提示,才能确保进行您的研究是有意义的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10