
数据科学的5个常见误解,看完想走弯路都难
尽管大数据、机器学习和预测分析带来了巨大的好处,但数据科学对于各种规模的企业来说,仍然是一个的敏感话题。很多人不仅不愿意采用相关的系统和硬件,而且在转型时,在收集信息这一步上就落后了其他人。
美国的企业、组织和政府的混乱数据每年为美国经济带来高达3.1万亿美元的负担。更糟糕的是,14.9%的营销人员声称他们根本不知道什么是大数据。数据显示群众对大数据和数据科学方面知识匮乏。学习如何使用这些数据是这个行业的一部分,似乎同时也成了一个巨大的障碍。
你可能会问:关于数据科学的错误概念是什么?项目管理人员和业务经理需要注意什么?让我们一起仔细探讨一下。
1. 数据量决定准确性
如果打算开始收集大量信息,然后使用现代化的系统和工具来分析这些信息,那么这个观点这是需要马上消除的一个误解。大量的数据并不一定意味着高精度,也不意味着能从数据中获得更多的价值,某些数据本身就毫无价值。
在收集数据之后,应该通过一系列步骤对数据进行筛选。
1. 了解你需要分析哪些数据集,以及如何才能最完美的完成任务。
2. 从数据中提取有用的信息或可操作的见解。
3. 运用这些见解来完善流程。
4. 微调以上的流程,创建一个流畅的数字数据机器。
以上每一个步骤不仅需要您了解相关数据,并且需要了解如何使用这些数据,没有任何一个步骤与数据量有关。数据量不重要。重要的是如何利用数据,以及如何正确应用到您的业务中去。
2. 数据科学就是商业智能
商业智能和数据科学经常被混淆,那些不那么熟悉这个行业的人更是感到迷茫。它们并不是同义词。商业智能涉及数据,但更多的是关于组织的运营等。这个过程你需要回答诸如what、when、who和how等问题。数据科学是与预测分析相关。目标是收集足够的信息,以建立可识别的模式和见解。此外,数据科学更多的是与数据挖掘、统计和定量分析有关,对于预测建模、多变量测试和流程计划有着非常关键的作用。不要把数据科学和商业智能这两个概念混淆。
3.数据量决定一切
许多中小型企业认为大数据技术就一定需要大量的数据。事实并非如此,批量数据是目标,但是也不是说需要数百万的客户来提取见解。
IBM将数据科学定义为由四个基本的“V”组成 --- 数量、速度、品种和准确性。如果您可以把您的数据结构化到这些类别或概念中,对大数据分析很有价值。除了数量之外,当前数据的真实性,多样性和传入数据的速度都是有差别的。
4. 资质王牌人才和经验
深入观察任何一个职位董事会,会看到许多企业对统计学、机器学习甚至数学博士学位的数据科学家的渴求。
数据科学领域,人才和经验同样重要。实际上,拥有多年从事经验的人可能会比刚毕业的高学历学生有更高的声望。我们并不是在引导您如何选择员工,在数据行业,通过优先考虑人才和经验,能为企业抓更多的机会。
5. 数据科学家会写代码
虽然有很多数据科学家也了解编程,知道如何编写和使用计算机语言。景观如此,这并不意味着他们就是编程方面的专家。本质上他们只关注一两种技能,其中最相关的就是数据科学和分析,编码可能只是他们的附加技能。
数据科学并不神奇
很多外界人士都神话了数据科学,或者至少是在一些方面盲目崇拜这种形式的科学。数学、统计和分析工具这些都是必备的,但是数据科学更多的是一门艺术。提取现代企业和组织需要的有用信息,这既需要技巧,也需要人才,更需要经验。虽然机器学习和预测工具可以替代这些,但不能根本解决底层的需求。仍然需要实际的数据科学家来完成大量的工作。
在实际实施之前谨记这些提示,才能确保进行您的研究是有意义的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27